

ASTRA/TGLF simulations of full power single null DTT scenarios comparing positive and negative triangularity

Paola Mantica

ISTP CNR Milano Italy

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Authors

P.Mantica¹, A.Balestri², I.Casiraghi², A.Mariani², R.Ambrosino³, L.Balbinot⁴, P.Innocente⁴

DTT S.C. a r.I., Frascati, Italy

¹ Institute for Plasma Science and Technology, CNR, Milano Italy

² Università degli Studi di Milano-Bicocca, Milano, Italy

³ Università degli Studi di Napoli Federico II, Naples, Italy, Consorzio CREATE, Naples, Italy,

⁴ Consorzio RFX, Padova, Italy

With thanks to the DTT team and to the IPP ASTRA group

DTT configurations with negative triangularit

DTT triangularity profiles

Poloidally averaged triangularity is lower in NT, ellipticity similar

ASTRA simulation settings

- Simulations for the moment are for steady-state at flat-top
- Fixed boundary from CREATE-NL code, equilibrium evolved selfconsistently with SPIDER
- TGLF SAT2 used for turbulent transport
- Predict: ne, Te, Ti, J, 2 impurities (Ne, W). Rotation has neglibigle impact. Ne is used as seeding gas in both cases.
- Impurities charge profiles are predicted with JINTRAC/SANCO and fed into ASTRA. Impurity densities are calculated by ASTRA/TGLF under prescription of initial Zeff and nW/nNe=0.004.
- Boundary conditions to be compatible with SOL and detachment:

•		PT	NT
•	ne sep	8.27 E19 m-3	7.63 E19 m-3
•	Te-Ti sep	130	60 eV

• For PT : pedestal from EFIT, simulation inside ρ_{tor} =0.94

For NT: L mode, simulation inside ρ_{tor} =1

Heating profiles

- ECRH 170 GHz 29 MW on plasma •ICRH 60-90 MHz 6 MW on plasma
- NBI 510 keV 10 MW on plasma

Temperature, density, q profiles

- Loss of pedestal leads to a constant delta in temperatures
- It is not an exponentially growing deficit in NT, as it would be for constant R/LT
- Density is similar. Can be further improved playing with gas puff.
- q is similar apart from very edge

There is an increase in R/LT in NT which partly alleviates the effect of pedestal loss

Possibly simply due to having higher normalized fluxes due to lower T

The increase in R/LT is not enough to recover same core temperatures

Impurities and powers

R/L_T and R/L_n and GENE input at ρ_{tor} =0.85

Comparison with PT shape but with all the rest from NT

Only shape changed to PT, boundary conditions, heating, q

Surprise! Geometry does not do much, changes are mainly due to having pedestal or not

Conclusions

- ASTRA/TGLF SAT2 first simulations of a pair of full power SN DTT plasmas with positive and negative triangularity are now available
- Plasma settings are taken realistically and simulations are selfconsistent so there are changes in boundary conditions, plasma current (to keep same q), heating depositions and impurity profiles
- Loss of pedestal is only partially compensated by higher R/LT in the outer region
- However, similar profiles and R/LT values are obtained with PT geometry and boundary conditions, heating, q profile from NT simulations -> changes are mainly due to different boundary and not to geometry!
- Stand-alone TGLF simulations will be made to assess stiffness and parametric dependences

