

FZJ CAPABILITIES AND PLANS FOR 2022

2022-03-02 IT. Dittmar on behalf of the FZJ team

Content

1.Capabilities

- * LID-QMS & TDS
- + LIBS
- sample cutting
- 2.Samples at FZJ
- 3.Plans

Ref: M. Zlobinski et al., Fus. Eng. Des. (2019) in press, doi:10.1016/j.fusengdes.2019.02.035

page 3/23

Full JET divertor tile

page 4/23

quartz sample table for TDS

TDS tube inner⊘ 52 mm

page 5/23

HML T licence limit 2.5x10¹⁰ Bq (for gaseous T) 2.5x10¹³ Bq (for bound T in material)

LID

page 6/23

Dual pulse LIBS setup

Sample cutting & metallurgy

- dry or wet cutting
- epoxy embeding & polishing
- Be compatible
- limited T amounts
- "warm" SEM

Available JET samples at FZJ for fuel retention analysis by TDS and LID-QMS TDS:

- small Be block samples from 2XR10IWGL, 2B2C dump plate, 4D14WPL (9 from ILW-1, 7 from ILW-2)
- 9 small Be block samples from 2XR11 and 4D15 (exposed 2011-2016)
- Poloidal fraction of HFGC14LH (= divertor tile 0 from ILW3): cores 1c-7c: for comparison of D retention with LID-QMS and NRA possible external cooperation: Image Plate (IP) analysis of laser spots
- 4 W divertor lamellas (A14, B14 from ILW2; B12, B13 from ILW3)
- LID-QMS (Laser-Induced Desorption):
- Poloidal fraction of 14ING1C (divertor tile 1 from ILW3): perform poloidal laser scan for D profile
- Cut blocks of Be limiter 2XR10 from ILW3 for poloidal D profile
- some small further samples

Member of the Helmholtz Association

Plans

- Fuel retention studies with LID-QMS & TDS
 - on samples to be agreed upon here
- Baking experiments
 - LID-QMS for pre- and post fuel content estimate
 - Baking in TDS part
- LIBS & metallurgy on W-divertor lamella
- T imaging plate measurements on LID-QMS samples

Draco dormiens nunquam titillandus

(Motto of the Hogwarts School of Witchcraft and Wizardry and also pretty good live advice)

Thanks for your attention

"one waking", Jackie Morris, 2008

LID parameters at FREDIS

- pulsed Nd:YAG laser (1064 nm) with 0.1-20 ms pulse duration
- up to 40 kW peak power (2.5 ms)
- up to 100 J/pulse (above 2.5 ms pulse duration)
- up to 1000 Hz, but max. 500 W average power

LID Measurement and Evaluation Procedure

LID measurement procedure:

- valve to pump is closed
- \Rightarrow background pressure is rising
- QMS scans starting
- 1 laser pulse fired
- \Rightarrow jump in desorbed mass channels
- QMS stopped
- valve opened

LID evaluation procedure:

- fit of partial pressure evolution before laser pulse ⇒ function 1
- fit after laser pulse \Rightarrow function 2
- extrapolation of function 1 and 2 to time of laser pulse
- ⇒ difference of both functions at that time is the desorption from sample
- LID signal for D = sum of mass 3 (HD) and 4 (D₂), ...

Zlobinski #A7 page 13/23

TDS: Heating of a sample by 6 IR lamps, PLCcontrolled linear heating ramps (up to 1 K/s, up to1273 K tested,(max. 1433 K))

oad lock

LID: Heating of a small (ø3 mm) spot with a high energy laser pulse (up to 100 J, 0.1-20 ms duration, Nd:YAG @1064 nm)

Glove boxes

load lock

Be

for safe handling of

FREDIS IN

HML

QMS: mass spectrometry for quantification of desorbed gases

TDS oven

air lock

page 14/23

Analysis Device in Jülich: FREDIS

Member of the Helmholtz Association

page 15/23