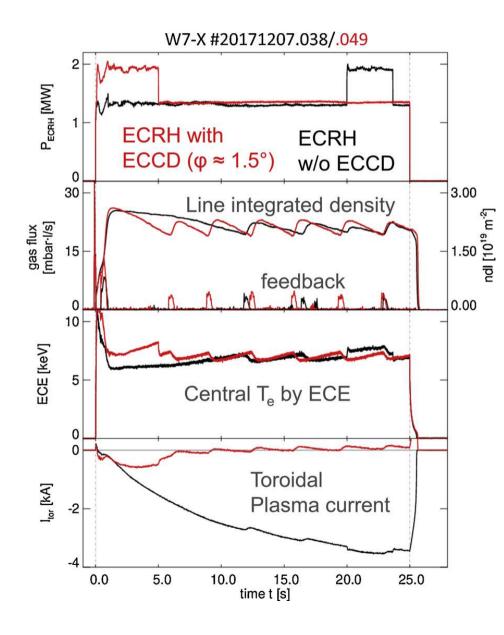
TG Scenarios 21 February 2022

Use of ECCD to Achieve Steady-State Current Conditions in W7-X


C. D. Beidler, T. Stange, Y. Turkin, W7-X Team

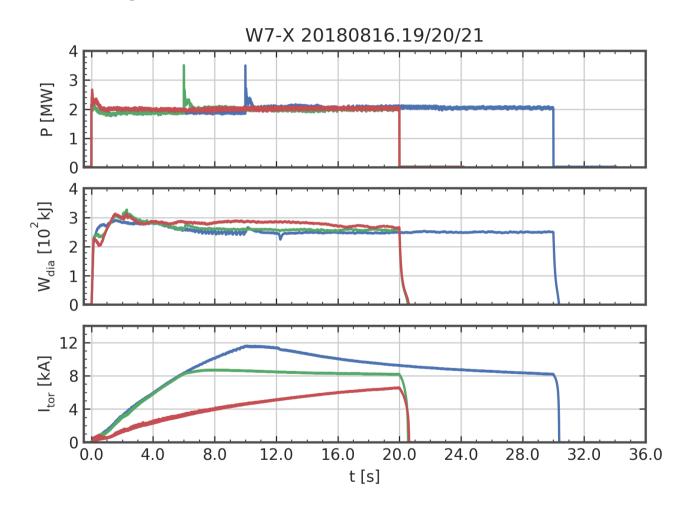
Max-Planck-Institut für Plasmaphysik Greifswald, GERMANY Page 1 of 4 21 February 2022

Use of ECCD to attain plasmas with $I_{tor}=0$

T. Stange *et al*, presented at the APS Plasma Physics Conference 2018

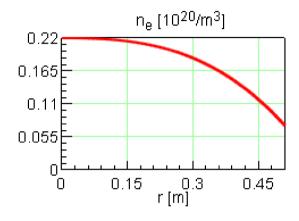
Figure taken from: M. Endler et al,

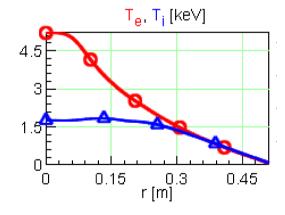
Fusion Eng. Des. 167 (2021) 112381


Page 2 of 4 21 February 2022

ECCD-Accelerated Convergence of I_{tor} to I_{bs}

discharges: 20180816.19 20180816.20 20180816.21


ECCD discontinued after: 10 s 6 s no ECCD


Page 3 of 4 21 February 2022

Bootstrap Current for Discharge 20180816.20

For these profiles in the W7-X standard configuration:

Z_{eff}	I_{bs} (kA)	L/R (s)
1	9.08	12.31
1.5	8.03	9.76
2	7.24	8.05
3	6.02	6.07

 $I_{bs}=73~\mathrm{kA}$ in equivalent axisymmetric tokamak for $Z_{eff}=1.5$

Page 4 of 4 21 February 2022

Comments

More advanced scenarios are described in:

- Y. Turkin *et al*, Fusion Sci. Technol. **50** (2006) 387.
- P. Sinha et al, Nucl. Fusion **59** (2019) 126012.
- The influence of ECCD-induced "crashes" has not been accounted for in such scenarios as a first-principles model for such events is lacking. Our ability to predict the current evolution in W7-X with quantitative accuracy suffers accordingly.
- Additional ECCD experiments will be needed in OP2; e.g. discharges of longer than ≈ 5 s in the low-mirror configuration will require counter current drive to keep I_{tor} at an acceptable level.