Finite element phase space representation of zonal structures in ORB5, a.k.a how to calculate $f\left(r, v_{/ /}, \mu\right)$ in ORB5*

*spin-off of ATEP activity on Phase Space Zonal Structures [M. Falessi]

A.Bottino
${ }^{1}$ Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

Acknowledgments:
Sergio Briguglio, Matteo Falessi, Thomas Hayward-Schneider, Alexey Mishchenko and Xin Wang

TSVV10, 23/02/2022

Particle-in-cell (PIC), physicist view

Why is the calculation of a simple quantity like $f\left(r, v_{\| /}, \mu\right)$ a problem for ORB5?

- In PIC, plasma is described by a small number of super-particles (SP), SP are objects with a weight (physical particles density) w_{p} a position (5D/6D) Z_{p} and a phase-space volume V_{p} associated with it.
- The Lagrangian motion of the SPs is straightforwardly described by the Newton-Maxwell equations, usually phase-space volumes are conserved along Lagrangian trajectories.
- The self-consistent fields (if needed) are calculated by projecting on a spatial grid charge and current associated with each SP. How the field equations are solved is not part of the PIC discretisation.

The PIC method does not calculate f

IMPORTANT: the "physics" interpretation of PIC is highly misleading, it hides the statistical nature of PIC. The weight of single particle IS NOT the value f in a point!

To represent f in a point you have to
do the same operation you would do in nature (binning):

1) Define a small 5D volume centred around the point with enough particles in it to diminish the error described above (many particles with small volumes).
2) Count how many physical particles are present in that volume (sum of the weights).
3) Divide the number of particles by the volume.

Binning is noisy and expensive.

The PIC method in applied mathematics

The PIC method is a numerical technique (solid, fluids, cosmology...):

- A continuous function, whose Lagrangian derivative is knows, is sampled using \mathbf{N} individual, randomly chosen points (or fluid elements). Those points are tracked in continuous phase space via Euler-Lagrange equations. Up to 6N ODEs to solve (trivial).
- Moments of the distribution function are computed simultaneously on Eulerian (stationary) mesh points, charge assignment (less trivial, we use finite elements).
- It can be shown that the calculation of the moments is equivalent to a Monte-Carlo integration [Bottino and Sonnendruecker JPP 2015]. The "volume" V_{p} has now the meaning of "importance sampling".
- The closest we can be to calculate f in a point is ("binning"):

$$
f(\mathbf{x}) \simeq \frac{1}{V} \int_{V} \mathrm{~d} \Omega f \quad \text { Error } \propto \frac{\sigma}{\sqrt{N}}
$$

This is clearly a statistical problem, with all the issues related to it.

The PIC/Finite element method in ORB5.

- Field solver and charge/current assignment: B-splines (finite elements).
- Example, Polarisation equation from a simple GK Lagrangian:

$$
\begin{gathered}
\frac{\delta L}{\delta \Phi} \cdot \delta \Phi=-\sum_{\mathrm{sp}} \int \mathrm{~d} \Omega e J_{0}(\delta \Phi) f+\sum_{\mathrm{sp}} \int \mathrm{~d} \Omega \frac{m c^{2}}{B^{2}} f_{M} \nabla_{\perp} \Phi \cdot \nabla_{\perp} \delta \Phi=0 \quad \forall \delta \phi \\
\sum_{\mathrm{sp}}\left(\int \mathrm{~d} W e J_{0}^{\dagger} f+\nabla \cdot \frac{m n_{0} c^{2}}{B^{2}} \nabla_{\perp} \Phi\right)=0
\end{gathered}
$$

Finite element representation of potential:

$$
\Phi_{h}(\mathbf{x}, t)=\sum_{\mu=1}^{N_{g}} \Phi_{\mu}(t) \Lambda_{\mu}(\mathbf{x})
$$

Discrete Polarisation eq.:

$$
\sum_{\mu=1}^{N_{g}} \Phi_{\mu} \sum_{\mathrm{sp}} \int \mathrm{~d} \Omega \frac{f_{M} m c^{2}}{B^{2}} \nabla_{\perp} \Lambda_{\nu} \cdot \nabla_{\perp} \Lambda_{\mu}=\sum_{\mathrm{sp}} \frac{1}{N_{p}} \sum_{k=1}^{N_{p}} w_{k}\left(e J_{0} \Lambda_{\nu}\left(\mathbf{R}_{k}\right)\right) .
$$

Set of linear equations to solve (LU decomposition):

$$
\sum_{\mu} A_{\mu \nu} \Phi_{\mu}=b_{\nu} \quad A_{\mu \nu}=\sum_{\mathrm{sp}} \int \mathrm{~d} \Omega \frac{f_{M} m c^{2}}{B^{2}} \nabla_{\perp} \Lambda_{\nu} \cdot \nabla_{\perp} \Lambda_{\mu} \quad b_{\nu} \quad=\sum_{\mathrm{sp}} \frac{1}{N_{p}} \sum_{k=1}^{N_{p}} w_{k}\left(e J_{0} \Lambda_{\nu}\left(\mathbf{R}_{k}\right)\right) .
$$

$f\left(r, v_{l /}, \mu\right)$ using finite elements in ORB5

- Define a new B-splines basis:

$$
\Lambda_{\mu}(\mathbf{x})=\Lambda_{\mu 1}(r) \Lambda_{\mu 2}\left(v_{\|}\right) \Lambda_{\mu 3}(\mu)
$$

- Discrete f:

$$
f\left(r, v_{\|}, \mu, t\right) \simeq f_{h}\left(r, v_{\|}, \mu, t\right)=\sum_{\mu=1}^{N_{g}} f_{\mu}(t) \Lambda_{\mu}(\mathbf{x})
$$

- Equations to solve:

$$
\begin{gathered}
\sum_{\mu} A_{\mu \nu} f_{\mu}=b_{\nu} \\
A_{\mu \nu}=\int \mathrm{d} \Omega \Lambda_{\nu} \Lambda_{\mu} \quad b_{\nu}=\frac{1}{N_{p}} \sum_{k=1}^{N_{p}}\left(w_{k}+f_{0}\left(r_{k}, v_{\| k}, \mu_{k}\right) V_{k}\right) \Lambda_{\nu}\left(r_{k}, v_{\| k}, \mu_{k}\right) .
\end{gathered}
$$

- Caveat: Matrix construction requires knowledge of the 5D metric (Jacobian). Note: some approximations in the present version of ORB5.
- New module in ORB5: pszs.f90: 1D, 2D and 3D projections on different coordinates $\left(r, v_{/ /}, \mu\right)$, $\left(P_{p h i}, \mathrm{E}_{\mathrm{k}}, \mu\right) .$. , solver for non periodic coordinates.

1D Example: nr=32; spline order=4

2D Example: $n r=32, n v_{/ /}=40 ;$ spline order=4

Solution Example 2

$\square \mathrm{d} / \mathrm{dr}$

B-splines

$\square \mathrm{d} / \mathrm{dke}$

2D Example: $\mathrm{nr}=32, \mathrm{nv} / /=40$; spline order=4

2D Example: $n r=32, n v_{/ /}=40 ;$ spline order=4

Mass matrix

3D Example: $n r=32, n v_{/ /}=40, n \mu=12$; spline order=4

3D Example: $\mathrm{nr}=32, \mathrm{nv} / /=40, \mathrm{n} \mu=12$; spline order=4

ORB5 defaults

- 1D $f(r)$ in hdf5 output on a grid of the size of number of splines.
- 2D $f\left(v_{l /}, \mu\right)$ in hdf5 output on a grid of the size of number of splines.
- 3D B-spline coefficients stored (no matrix construction).
- pszs3d can be used to construct the matrix, solve the linear algebra problem and construct $f\left(r, v_{\|}, \mu\right)$ on a new grid of any size.
- to compile pszs3d:
> make OPENMP=TRUE pszs3d.
- Tested up to: nr=80, nv//=100, nmu= 40 on a Raven node.

NLED-AUG: $\mathrm{nr}=32, \mathrm{nv} / /=60, \mathrm{n} \mu=32$; spline order=3

1) EP distribution: Anisotropic Slowing-down [Hayward-Schneider, Rettino]

NLED-AUG: $\mathrm{nr}=32, \mathrm{nv} / /=60, \mathrm{n} \mu=32$; spline order=3

1) EP distribution: Bump-on-tail [Novikau, Vannini]

Deuterium f_{0}, density: 1.0425

Fast f_{0}, density:0.026336

Deuterium df, density:-0.00037054

Fast df, density:4.8488e-09

Outlook and to do list

- Check and improve the calculation of Jacobian in pszs3d.
- Extend the diagnostics to other possibly useful zonal quantities as power balance....
- Physics applications (ATEP).
- Compare with other codes...

