

IMASification of the HFPS and data preparation tools for large-scale validation

A. Ho (also on behalf of TSVV-11 team)

IMAS Fusion Science Meeting – April 12, 2022

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The need for large-scale validation of HFPS

Status: •

- ITER and DEMO will require a full-device plasma simulator for scenario development and operational concerns
 - Spurred the High-Fidelity Plasma Simulator (HFPS) project
 - JINTRAC was selected among the existing codes as the platform on which to build this functionality

Problem: •

- Predict-first capability of JINTRAC is largely unexplored, typically adjusted on a case-by-case basis
- **Goal:** Perform a large-scale validation of the HFPS and its components to evaluate predict-first capability
 - Requires large set of various scenarios and standardized execution settings to avoid bias

Workflow requirements for large-scale validation

Input

Extraction and fitting of experimental data and uncertainties

Definition of meaningful and searchable data labels

Model input population

Simulation setup based on labels and/or highlevel descriptors

Simulation

Definition of minimal input set for meaningful results

Standardized execution settings templates

Easy submission of large numbers of runs

Modularity of component codes for comparisons

Output

Definition of validation metrics and acceptance tolerances

Visualization of data in interpretable forms

Long-term storage with searchability / sortability

Manipulation and analysis tools for sequential workflows

Simulation preparation from experimental data

Current strategy:

- Use machine-specific tools to transform experimental data into IDS format for HFPS ingestion
 - JET: EX2GK (A. Ho)
 - AUG: TRgui (G. Tardini)
 - TCV: tcv2ids (O. Sauter)
 - WEST: west_simu_preparation (J.-F. Artaud)
- Unobserved but mandatory input quantities are estimated using domain knowledge within these tools
- Categorization using metadata labels must be done manually, not currently in tools

Long-term strategy:

- UDA for access and direct transformation of experimental data into IDS
- Standardization of data processing pipeline across machines, compiled into a single tool with IDS in/out

0.4

Description of the High Fidelity Plasma Simulator

•	Jetto (on hpc-login02.iter.org)	\odot \otimes \otimes				
File Data Help						
Setup C Equations C Bound						
General	itor -	80.0				
Machine	itter • Start Time (secs) allo				
Shot Number	I34121 End Time (s	ecs) 80.5	otto (on hne legino)	itor org		୍ର୍ର୍
Number Of Grid Points	101	File Data Help	etto (on npc-loginoz	citer.org)		000
Time Step Control			n			
Min Time Step (secs)	1.0E-12	Setup Equations Boundary	Conditions 🖪 Restart	1		
Max Time Step (secs)	1.0E-03 Time Polygon Cons	Contain Contains				
Select Ex-File						
Ex-File Source	Private Select					
Ex-File	/home/ITER/knightp/jetto/runs/run401/jet	Equation	Usage	Mass (amu)	Fraction	_
Select Input IDS		Current	Predictive 🔻			
	Read from IDS	Electron Temperature	Predictive 🔻			
User public	Machine iter Shot 130011	Ion Temperature	Predictive 🔻			
Time Between Input IDS Slice Updates (s) 0.81		Ion (1) Density	Predictive 💌	3.0	0.5	
		Ion (2) Density	Predictive 💌	2.0	0.5	
		Toroidal Momentum	Predictive V			
	Exit Submit		Tredictive			
		[Initial Condition and Interpre	tive Profiles			
	Туре [q, Te,			•		
	q. Te			IDC		
		[d, 18, 11	i, ne from core-profiles	105		
					Hala	
					нер	
			Exit St	ubmit		

Continual development strategy:

Current HFPS:

- A collection of IMAS adapted actors that can simulate tokamak fusion plasmas using state-of-the-art models
- Actors are well-established, covering many physical phenomena and with tests from long use history
- Prototypical but functional code coupling *framework*, further developments foreseen
- Already combines ETS components (H&CD) and all JINTRAC components

- Agree upon standards for python based workflows, converge on a common set of templates for new users
- Update python driver loop to match these standards and generalize it to extend possible workflows
- Planned extensions: DINA, reduced SOL models, reduced pedestal models, surrogate transport models, additional models developed by TSVVs

IMASification status of HFPS

- Convert user-facing JINTRAC inputs / outputs to IDS completed
 - JETTO IDS inputs: core_profiles, core_sources, equilibrium, nbi, pellets
 - JETTO IDS outputs: core_profiles, core_sources, core_transport, equilibrium, summary, dataset_description
 - Grid2D IDS inputs: equilibrium
 - EDGE2D IDS outputs: edge_profiles, edge_transport, edge_sources, transport_solver_numerics, dataset_description
 - COCONUT IDS coupling: transport_solver_numerics
- Build JINTRAC actors for JETTO, Edge2D, Coconut (FC2K compatible) completed
- Demonstrate couplings to existing actors completed
 - Opted for **python** workflows for source control, lighter dependencies, and wider support community
- Adapt SimDB architecture as simulation catalog completed but not deployed
- Adapt code-dependent parameters for proposed python actor workflow not completed
 - Hard XML requirement requires significant investment to adapt for a complex code
- Evolve to a more general "HFPS" GUI long term plan using existing JAMS GUI in medium term
 - Internal logical checks of simulation settings conflicts with modular data-driven GUI approach

Preliminary test run of dynamic HFPS simulation

- HFPS simulation of 8 s AUG plasma pulse, scenario intended for comparison between HFPS and Fenix
- Manual setup with heavy iteration, output visualization via Scenplot and Kinplot tools

IMASification of the HFPS and data preparation tools for large-scale validation – April 12, 2022

Initial phase in large-scale validation workflow

- HFPS validation workflow under development preliminary process defined and first runs underway
- Close collaboration between TSVV-11 and ERG of A. Ho to ensure workflow meets modelling needs
- Heavy iteration is expected with additional test cases, fast models, and data tooling

Future requirements:

- Automation of workflow to handle large-scale execution and data reduction
- Additional storage space on Gateway system to house large number of validation simulations (~10 TB)

Summary and outlook

Large-scale validation via automated workflows allows blind testing of models to experiments to judge predict-first capability of HFPS – crucial for ITER scenario design and operation

Input

- Experimental data tools are currently machine-dependent, good interim solution to allow progress
- IDS-centric workflow ensures compatibility with future tool development and standardization
- Difficulty is not in coding, but getting machines to agree on a single procedure / strategy

Simulation

- HFPS is now compliant with IDS input and output, capable of using python workflows to couple actors
- First demonstrations of HFPS capability to interface and compare with other integrated models via IDS
- Preliminary validation workflow defined and template settings developed, requires testing
- Current execution requires JAMS GUI to translate between user settings and internal flags, legacy logical checks may make automation difficult

Output

- Preliminary validation metrics defined, acceptance tolerances still to be determined
- Validation-specific visualization and comparison tools needed
- Additional storage space required on the Gateway system, IDS file sizes larger than originally expected