

Selection of ECRH-Proposals for OP2 (with regard to advanced use of ECRH)

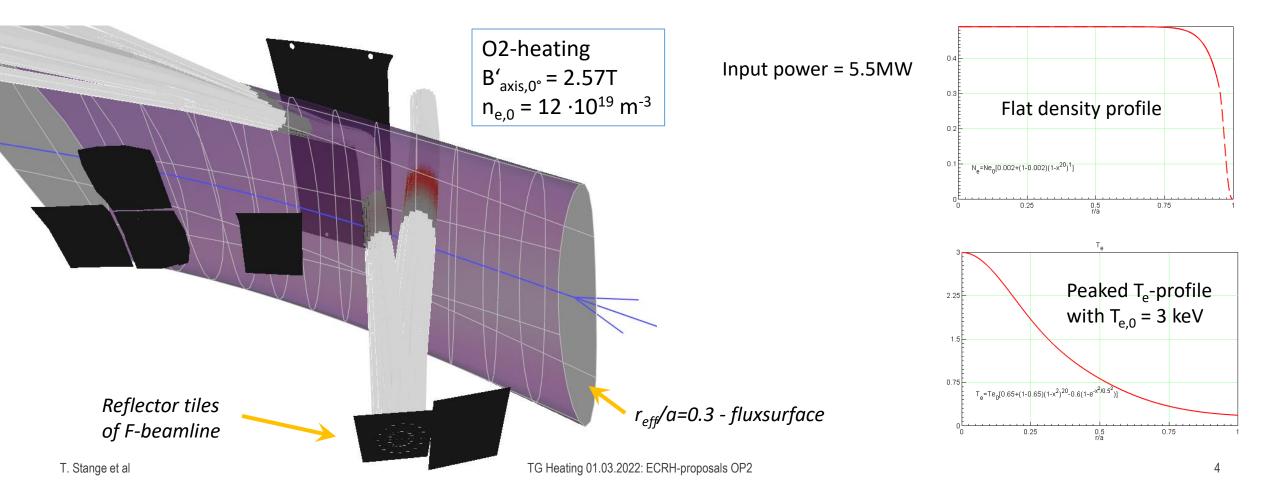
Torsten Stange on behalf of the W7-X ECRH team

1. Overview (1/2)

Commissioning proposals (not necessarily during commissioning phase):

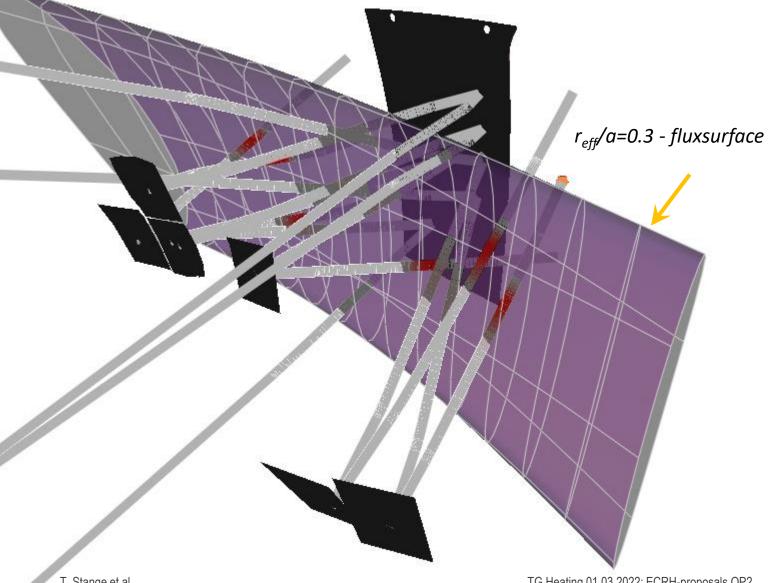
- Optimization of new O2-multipath scenario beyond cutoff density 1.2 · 10²⁰ m⁻³ (during density gas feedback)
- Optimization of X3-multipath scenario via O2-reflector tiles at 7.10¹⁹ m⁻³ (during density gas feedback)
- Optimization of X3-multipath scenario via W-graphite tiles at > 10²⁰ m⁻³ (during density gas feedback)
- Commissioning of 175 GHz blibs for CTS-diagnostic
- Commissioning of CTS-radiometer at 210 GHz and 70 GHz
- Commissioning of sniffer diagnostic
-

1. Overview (2/2)


Physics proposals:

- Performance of high density gas fueled O2 discharges in dependence on the magnetic field
- Probing the optimal power deposition density to overcome the T_i-clamping level
- High performance plasmas by OXB-heating during superdense peaked density profiles sustained by NBI-fueling
- Overtake of peaked high density NBI-plasmas by O2-heating (beyond X2-cutoff) or X3-heating at 1.75 T
- Performance of high n_e-plasmas with freely developing BS current vs zero-current plasmas by ECCD-compensation
- Compensation of BS current and increase of central magnetic shear in high performance discharges by ECCD
- General counteracting of bootstrap current for safety reasons and discovery of unexpected transport barriers
- Mimic BS current in a high density O2-scenario
- Performance of the different X3-heating scenarios at medium and high density (partly piggyback on 1.75T proposals and already part of X3-commission proposal => see also talk 01.02.2022)
- Startup physics proposals => collected/organized by Dmitry Moseev
- Variety of stray radiation proposals => collected/organized by Jakob Brunner
- Variety of parametric decay proposals => by Riccardo Ragona
- ⇒ Many of these proposals are still in the "conceptional" phase ... please contact me (<u>torsten.stange@ipp.mpg.de</u>) if similar proposals are already planned in other TGs or if you want to be included in the further proposal planning

2. Commissiong proposals: O2-reflector tiles



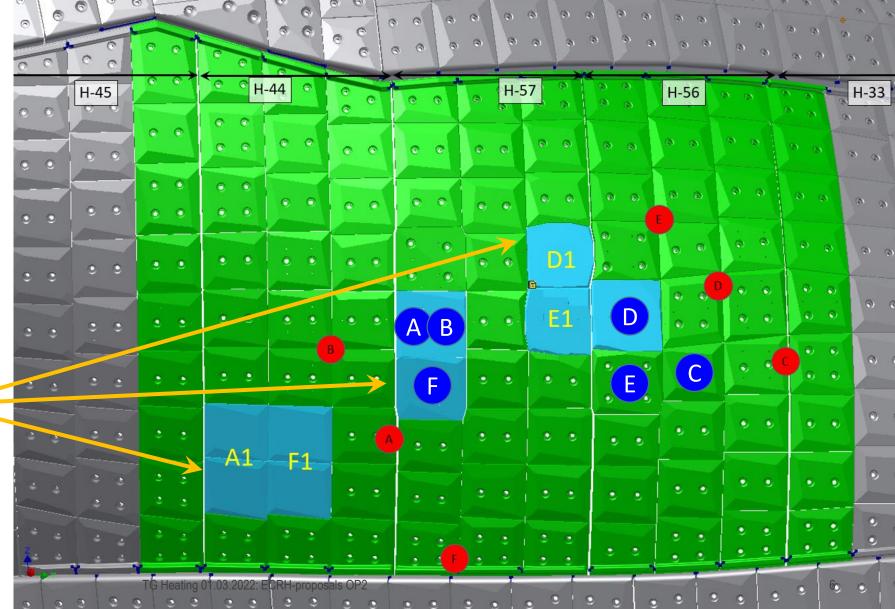
- O2-heating scenario was redesigned for OP2 to reduce stray radiation by about 50% (higher incidence angles with regard to B + beampaths slightly off-axis to allow use of polarization gratings)
- \Rightarrow Commissioning proposals for O2-scenario and X3-scenario

2. Commissiong proposals: O2-reflector tiles

- Power modulation of each gyrotron separately to identify badly absorbed beams
- slight change of polarization, slight change of beam position
- demonstration of optimized polarization gratings (only small increase of stray radiation with aproaching cutoff)
- \Rightarrow Try to fit an optimization procedure of all beams into a 20s-programm

Conditions:

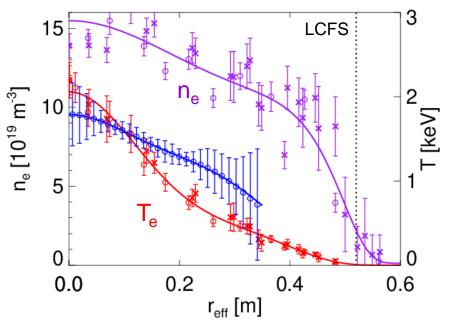
- Divertor gas feedback
- about 2 x 6 shots for O2
- about 5 shots for X3 via reflector tiles
- about 10 shots for X3 via W-coated tiles


2. Commissiong proposals: X3 via W-coated tiles

- broad area of heat shield opposite to ECRH-Launchers is W-coated in OP2 (green)
- same low absorption of direct ECRH-beam compared to dedicated reflector-tiles
- ⇒ possibility to use W-coated graphite tiles for several seconds as non-optimized reflector during X3 (take care of arcing)

TZM-reflector tile dedicated to O2 (also W-coated)

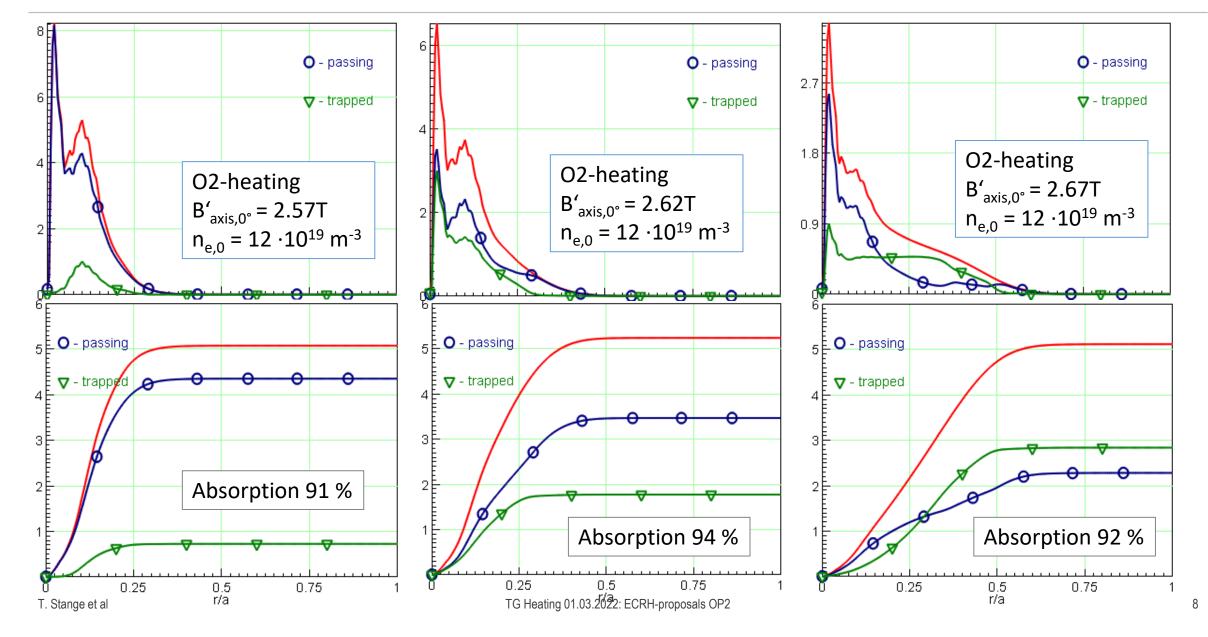
Red dots: perpendicular incidence during X2 Blue dots: possible reflectors for high density X3


T. Stange et al

3. Physics proposals: high density O2-operation (1/2)

Title:Performance of high density gas fueled O2 discharges in dependance on the magnetic field
(and the influence of trapped and passing particles)

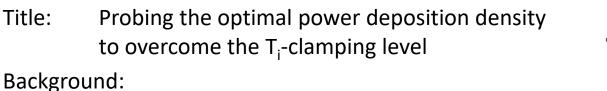
Background:


- highly fueled O2-heated discharges beyond the X2-cutoff density showed slighty peaked density profiles in OP1.2b and probably therefore also a good plasma performance
- One reason seems to be the broader O2-power deposition
- \Rightarrow slight off axis deposition was allowed for new O2-multipath scenario which reduces the stray radiation by a factor 2
- the O2-deposition can be varied by a change of B including a variation of the content of passing and trapped particles
 Proposal:
- probe the optimal magnetic field for maximum plasma performance
- centrally depositing beams are used only at the final density level to do not allow an early separation of T_e and T_i
- transport probed by modulation of different ECRH beams (success expected for centrally depositing beams)
- Standard ECE and CTS-radiometer is used to identify differences for trapped and passing particles (even though no influence is expected due to the high collisionality)

3. Physics proposals: high density O2-operation (2/2)

T. Stange et al

TG Heating 01.03.2022: ECRH-proposals OP2


6(

50

Proposal: ۲

- \Rightarrow Even though high T_e are achieved with central power deposition, the interaction volume for energy transfer from the electrons to the ions is limited
- Start of discharge with broad power deposition < 1MW/m³ (eventually without power deposition around plasma axis)
- increasing smoothly the overall power and power ulletdeposition density up to 2 MW/m³ and beyond
- \Rightarrow probe an eventual critical power deposition density
- If successful this kind of scenario should be repeated for different target density levels

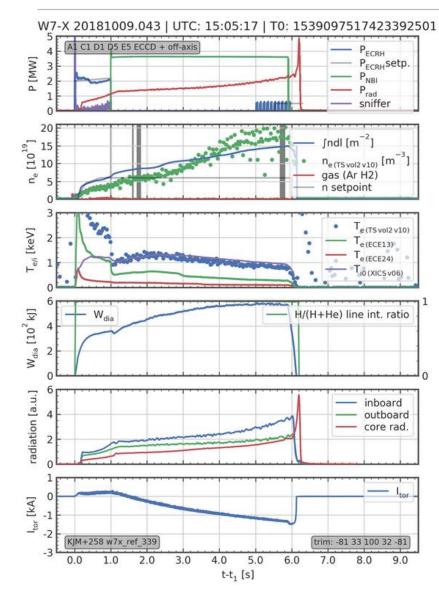
3. Physics proposals: Optimal power deposition density

- NTSS calculations show no change of the achieved ion ۲ temperature if the ECRH power deposition is broadened up to a minor radius of r/a < 0.3
- 50 40 30 Hull 20 10 with regard to T_i n_e [10¹⁹ m⁻³] T_{e,i} [keV] 9 5MW broad deposition 10 (comparable with O2) 18 10MW \rightarrow Central T_i limited р_{ЕСRН} [MW/m³] by power transfer n_e [10¹⁹ m⁻³] T_{e,i} [keV] in small central volume 9 5MW increase of power 18 \rightarrow Lower T_a but same power transfer p_{ECRH} [MW/m³] 3 n_e [10¹⁹ m⁻³] T_{e,i} [keV] \rightarrow increase of n T_i τ by 3 48 % increase Τ. 2 of density by 38 % 0.2 0.3 0.4 0.5 0.0 0.2 0.3 0.4 0.0 0.1 0.1 0.5 r_{eff} [m] r_{eff} [m] 9

18

5MW peaked deposition

(typical for X2)


 \rightarrow Same performance

3. Physics proposals: OXB-studies (1/2)

0.3

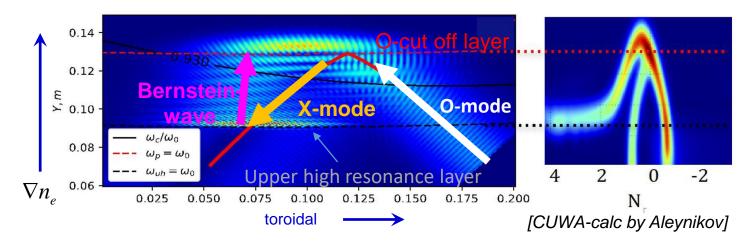
0.0

<u>Title:</u> High performance plasmas by OXB-heating during superdense peaked density profiles sustained by NBI-fueling (+ eventually pellet fueling)

20

15

10

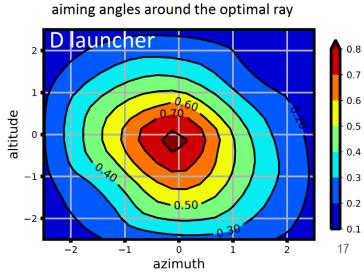

-0.3

 $n_{e} [10^{19} m^{-3}]$

Background:

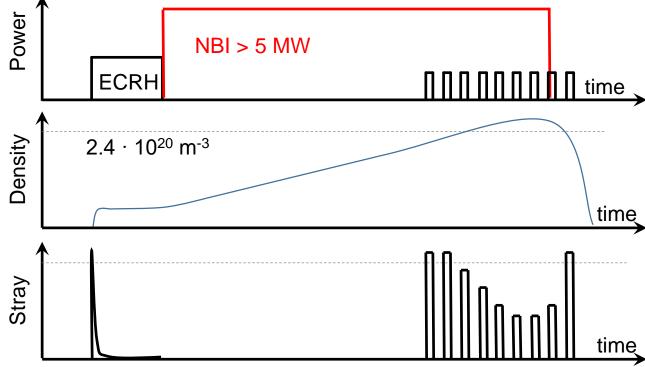
- possibility to achieve densities beyond
 2 x 10²⁰ m⁻³ with steep density profiles
- ⇒ Conditions for electron Bernstein wave heating via OXB-conversion
- First tries in OP1.2b but too low density
- 4 NBI-sources available in OP2

 \Rightarrow 140 GHz cutoff @ 2.4·10²⁰ m⁻³ seems to be no problem anymore


T [keV]

3. Physics proposals: OXB-studies (2/2)

Conditions: Search for reproducible NBI-scenario with almost stable density > $2.4 \cdot 10^{20} \text{ m}^{-3}$


- First, pulsed experiments to investigate coupling of single ECRH beams and response of density
- \Rightarrow eventually tests with additional pellet fueling if density pump out is too heavy
- 2D angle scan, because angle window quite small

Efficiency of OX conversion for beam

- 7 T. Stange 6 S. Lazerson
 - Increasing pulse length and power to increase T_e and T_i
 - \Rightarrow T_i-clamping will be no issue
 - About half of the beams can achieve OX-window => up to 4 MW
 - Envisaged scenario comparable to superdense core scenario at LHD

3. Physics proposals: Overtake of NBI-plasmas by O2/X3

<u>Title:</u>Overtake of peaked high density NBI-plasmas at around $1.5 \cdot 10^{20} m^{-3}$ with O2-heating (beyond X2-cutoff)Overtake of peaked high density NBI-plasmas at around $1.2 \cdot 10^{20} m^{-3}$ with X3-heating at 1.75 T(+ eventually additional pellet fueling for both scenarios)

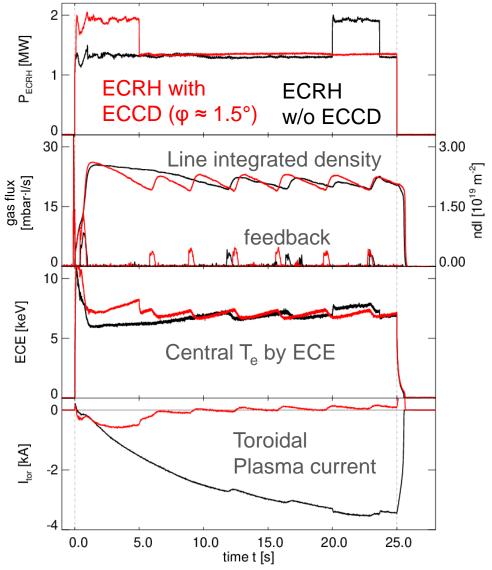
Background:

- "naturally" peaked density profiles of NBI-plasmas give a good starter for injecting high power ECRH combined with immediate good coupling between electrons and ions
- The intrinsically broad power deposition of O2 and X3 is the key issue for this experiments Proposal:
- Immediate switch-on or stepwise increase of ECRH-power will be tested (use of 2 NBI-sources)
- goal is to increase T_e and T_i in the center with peaked density profile to overcome T_i-clamping-level with the available ECRH power
- eventually tests with additional pellet fueling if density pump out is too heavy
- gas fueling should be avoided as much as possible to limit the edge density and to allow higher edge temperatures
- Dependent on results of O2-optimization repeat with different B

T. Stange et al

13

3. Physics proposals: Compensation of BS at high density


Title: Performance of plasmas with freely developing bootstrap (BS) current vs zero-current plasmas by ECCD-compensation at high densities

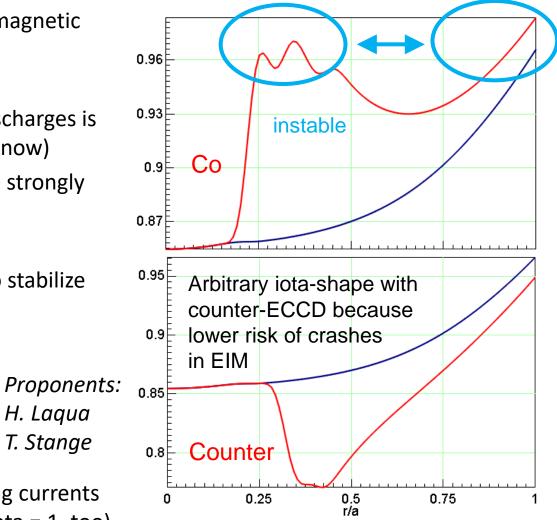
Background:

- ECCD-compensation up to 20kA is possible even at high densities
- \Rightarrow In addition magnetic shear can be changed (this important tool) was almost not used in OP1.2!)
- proposal includes the demonstration of the compensation of the • bootstrap-current by ECCD to keep strike lines constant
- An additional goal is to quantitatively compare the performance ۲ of a zero-current plasma vs a plasma with freely developing bootstrap current

Proposal:

- deposition radius must be identical as well as the density feedback
- strike line position should be kept as constant as possible by using the sweep coils or changing the main coils currents in the reference discharge

3. Physics proposals: ECCD for magnetic shear control


Title: Compensation of BS current and increase of central magnetic shear in high performance discharges by ECCD

Background:

- improved confinement phase in high performance pellet discharges is unstable (probably not only due to the limited pellets up to now)
- Internal currents (BS + central shielding currents) due to the strongly peaked density profile can play a role

Proposal:

- Using of moderate and broadly distributed Counter-ECCD to stabilize the central plasma by increasing the magnetic shear
 - + compensation of the overall BS-current + compensation of deposition shift due to shafranov shift + central B-reduction
- However, Co-ECCD is also worth to try ullet(at least to demonstrate the inverse effect).
- \Rightarrow ECCD will be increased smoothly to reduce effect of shielding currents (shielding current of Counter-ECCD can lead to crossing of iota = 1, too)

H. Laqua

T. Stange

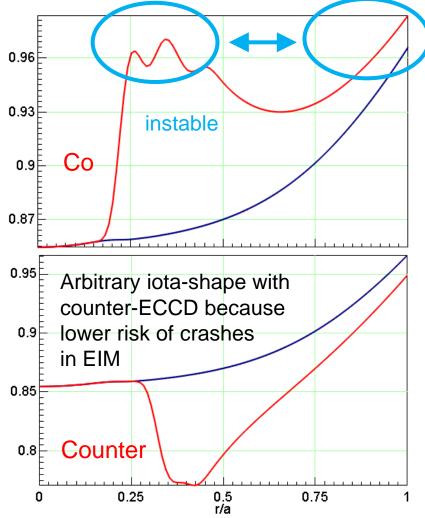
: ECRH-proposals OP2

15

<u>Title:</u> General counteracting of bootstrap current for safety reasons

3. Physics proposals: General use of ECCD for BS-comp.

and discovery of unexpected transport barriers


Background:

- bootstrap current usually increases the edge iota and changes the strike line position.
- Dependent on the distribution of the currents within the plasma the magnetic shear is also changed locally during the evolution of the BS-current.

Proposal:

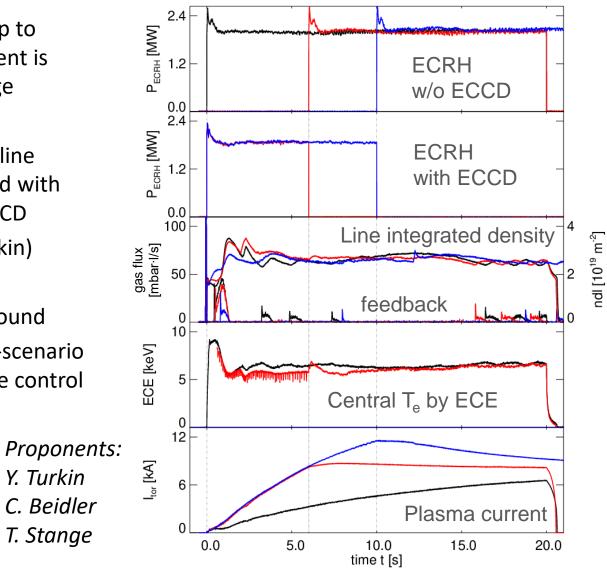
- For safety reasons, moderate ECCD can be used in general to reduce or compensate the BS-current (e.g. low iota or standard config).
- this strategy can maybe lead to the discovery of unexpected confinement behaviour like "triggering" of transport barriers due to the change of the magnetic shear by additional current layers

 \Rightarrow Most of the interesting phenomena are discovered by trying something

Y. Turkin

C. Beidler

T. Stange


16

3. Physics proposals: Mimic BS in high density scenario

Title: Demonstration of a discharge evolution scenario up to maximum densities where the final bootstrap current is mimicked by ECCD at the beginning of the discharge

Background:

- Plasma operation with coil currents having optimal strike line position for maximum bootstrap current can be combined with mimicking BS at the beginning of a discharge by use of ECCD
- \Rightarrow Demonstration in OP1.2 at low densities (proposal by Turkin) Proposal:
- optimum steady state high performance plasma not yet found BUT: possibility to mimic the BS-current in a high density O2-scenario should be demonstrated. Otherwise, eventual issues with the control systems (or even the physics) are identified to late in OP2

