ATEP progress meeting
March 9th, 2022
agenda:
A. Bottino: PSZS diagnostics in ORB5
Y.Y Li: Numerical Results of DAEPS Code with General Axis
Ph. Lauber: WP4 and WP2 updates
Y.Y Li: Numerical Results of DAEPS Code with General Axisymmetric Toroidal Geometry

\author{ \author{ \author{ \[\begin{gathered} A. Bottino: PS:
agenda:
Y.Y Li: Numeric
Ph. Lauber: W
\end{gathered} \]

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

震

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

\qquad

\qquad

March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

ATEP progress meeting March 9th, 2022 agenda: A. Bottino: PSZS diagnostics in ORB5 Y.Y Li: Numerical Results of DAEPS Code with General Ax Ph. Lauber: WP4 and WP2 updates ATEP Progress meeting, 9.March 2022

.

\section*{}

\[\begin{aligned} \& A. Bottino: PSZS diagnostics in ORB 5
\& PY Li: Numerical Results of DAEPS
\& h. Lauber: WP4 and WP2 updates \end{aligned} \] } } }

ATEP progress meeting
March 9th, 2022
agenda:
A. Bottino: PSZS diagnostics in ORB5
Y.Y Li: Numerical Results of DAEPS Code with General Ax
Ph. Lauber: WP4 and WP2 updates
ATEP Progress meeting, 9. march 2022

-
-

\qquad

\qquad

-
\qquad
\qquad

2
-
\qquad

administrative news：
•ATEP 2021 report accepted
•ACH support for advanced transport models and STRUPHY development submitted，2023／2024
• 5 EPS abstracts with ATEP contributions
•ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022
administrative news：
• ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
•5 EPS abstracts with ATEP contributions
－ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022
administrative news：
－ATE 2021 report accepted
－ACH support for advanced transport models and STRUPHY development submitted，2023／2024
－ 5 EPS abstracts with ATEP contributions
－ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022
\qquad
administrative news：
• ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
•5 EPS abstracts with ATEP contributions
－ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022
administrative news：
ATEP 2021 report accepted
EPS abstracts with ATEP contributions
TPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022

administrative news：
• ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
•5 EPS abstracts with ATEP contributions
－ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ATEP Progress meeting，9．March 2022
administrative news：
－ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
• 5 EPS abstracts with ATEP contributions
•ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
administrative news：
•ATEP 2021 report accepted
•ACH support for advanced transport models and STRUPHY development submitted，2023／2024
－ 5 EPS abstracts with ATEP contributions
•ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
administrative news：
－ATEP 2021 report accepted
－ACH support for advanced transport models and STRUPHY development submitted，2023／2024
• 5 EPS abstracts with ATEP contributions
• ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
\qquad
administrative news：
－ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
• 5 EPS abstracts with ATEP contributions
•ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
\qquad

0^{2} min
 路

ministrative news：
EPS abstracts with ATEP contributions 2021 report accepted
PA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ETEP support for advanced transport models and STRUPHY development submitted，2023／2024
administrative news：
•ATEP 2021 report accepted
• ACH support for advanced transport models and STRUPHY development submitted，2023／2024
• 5 EPS abstracts with ATEP contributions
•ITPA spring meeting，May 2nd－6th，ITER（abstracts till 1st April）
ministrative news：
EPS abstracts with ATEP contributions 2021 report accepted
PA spring meeting，May and－6th，ITER（abstracts till 1st April）
\qquad
ministrative news：
EPS abstracts with ATEP contributions 2021 report accepted
PA spring meeting，May and－6th，ITER（abstracts till 1st April）
\square

- beam box 1: H - measurements, control core Ti - beam box 2: D - drive instabilities
in all discharges: 55-60\% H/(H+D)
despite low $\mathrm{H} /(\mathrm{H}+\mathrm{D})$ we have L mode phase with 5MW NBI - most interesting phase (\& diagnostics availability)

MHI, SXR,RFL,ECEI,FILD,CXS

off-axis NBI heating: positive and negative spatial EP gradient study inwards transport of EPs and its effect on core background plasmas

AUG－IMAS modelling：EP driven modes change bursting characteristics during slow L－ H transition in hydrogen：discharge stays in L mode despite 5MW heating

\square

$11^{2 m a n}$

\qquad

\qquad
\qquad
－
\square


```
\(\square\)
```

 .
 和號蹅
－ ．

\qquad
正

\qquad
 \title{

model transition using time-dependent EP workflow using
 \title{ \section*{model transition using time-dependent EP workflow using
 \title{ \section*{model transition using time-dependent EP workflow using trview-IMAS interface trview-IMAS interface trview-IMAS interface trview-IMAS interface

 trview-IMAS interface} trview-IMAS interface
}

\square

time [ms]

160 time slices based on IDA largely automated analysis (except visualisation)
ready for:
coupling to transport codes systematic UQ, 'error bars' scenario optimisation
after finishing NBI module, ready for CG calculations
(TSVV10, started testing with eq. Maxwellian)

Toroidal mode numbers of AUGD 39681
Toroidal mode numbers of AUGD 39681
Toroidal mode numbers of AUGD 39681

 r.u.nemoness

Toroidal mode numbers of AUGD 39681

damping for $\mathrm{n}=2$ is not changing in 100 ms time window - drive must vanish

號

mid－radius， 1 MeV ， He ，co－passing，$\Lambda=0, \mathrm{n}=9 \mathrm{TAE}$ with $\mathrm{dB} / \mathrm{B}=10^{-3}$

 $$
\begin{array}{llllllll} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}
$$

 \qquad
 $$
s
$$

 $-$

colours：different starting phase， 10 markers with
starting tor．angle［ $0: 2 \pi / n$ ］
stin］

important：averaging over phase is crucial to
obtain correct fluxes
important：averaging over phase is crucial to
obtain correct fluxes路
－

路
\square －

1

都 ，

都

路

\square

\qquad

\author{ or trapped particles

 }

- 路
\qquad

[^0]
\qquad
\qquad
\qquad
\qquad
adding LIGKA calculated perturbation: follow set of market for wave-periods, time or no. orbits
\qquad

HAGIS2 as library is crucial element for PSZS transport model

 What is $\mathrm{dPz}, \mathrm{dE}, \mathrm{dLambda}$ for given perturbation after x completed orbits?
\cdot arrows: initial $(\mathrm{Pz}, \Lambda) \rightarrow(\mathrm{Pz}+\delta \mathrm{Pz}, \Lambda+\delta \Lambda)$ - color: δ Pz

- averages over 10 phases, 64 orbits
- 2-5 minutes to calculate
- trivial to overlay resonances...in progress - now needs to be weighted with f to calculate QL fluxes and convective transport in phase space
- replace probability matrices of kick-model

- transport coefficients $\mathrm{D}_{\mathrm{Pz}}=(\mathrm{dPz})^{2} / \mathrm{dt}$ and $\mathrm{K}_{\mathrm{Pz}}=(\mathrm{dPz}) / \mathrm{dt}$ can be evaluated

calculate fluxes: $\mathrm{dPz} / \mathrm{dt}[(\mathrm{eV} / \mathrm{s}) / \mathrm{s}]$

- divide $\delta P z$ by orbit transit time and number of orbits (here 32)
- the same information is available for Λ and E
- the same information is available for \triangle and E orbits (here 32)
transport coeflicint Dpz(dPz)/dt and Kpz(dPz)dt can bor te

```
aluated
```

.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
                                    O
```

```
                                    O
```


. =1
路

號
calculate $\delta \mathrm{Pz}$ as function of number of orbits; compare to converged $\delta \mathrm{Pz}$ (64 orbits, thin arrows)

$+2$
1
color
號
$\delta \mathrm{Pz} / \mathrm{dt}$ is not uniform during redistribution process: when particles move, they feel different wave potential during the redistribution process, depending on the mode structure
depending on what type of problem is to be solved (shortest time scale to be resolved), very few orbit transits (4-8) are sufficient.

．

\qquad

limit：simple scaling breaks down for $\mathrm{dB} / \mathrm{B}>4 \cdot 10^{-3}$

for larger perturbations，case－by－case calculation is necessary

\[
$$
\begin{aligned}
& A=5 \mathrm{e}-4, \text { no }=4, z o=10 \\
& A=1 \mathrm{e}-3 \mathrm{no}=4, z o=10 \\
& A=2 e-3 n o=4, z o=10 \\
& A=4 \mathrm{e}-3 \text { no }=4, z o=10 \\
& \mathrm{~A}=8 \mathrm{e}-3 \mathrm{no}=4, z o=10 \\
& =1 \mathrm{e}-4 \text {, no }=4 \text {, } z o=10 \\
& =8 \mathrm{no}=4,20=10 \triangle \\
& \text {, }
\end{aligned}
$$

\]	$\mathrm{A}=5 \mathrm{e}-4, \mathrm{no}=4, z o=10$	$*$
$\mathrm{~A}=1 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}=10$	$*$	
$\mathrm{~A}=2 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}=10$	$*$	
$\mathrm{~A}=4 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}=10$		
$\mathrm{~A}=8 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}=10$	\triangle	
---:	---:	---:
$\mathrm{A}=1 \mathrm{e}-3 \mathrm{no}=4, z o=10$	$*$	
$\mathrm{~A}=2 \mathrm{e}-3 \mathrm{no}=4, z o=10$	米	
$\mathrm{A}=4 \mathrm{e}-3 \mathrm{no}=4, z o=10$		
$\mathrm{~A}=8 \mathrm{e}-3 \mathrm{no}=4, z o=10$	\triangle	30

 $A=1 e-4, n o=4, ~ z o$
$A=5 e-4, n o=4, ~ z o$
$A=1 e-3 n o=4, ~ z o$
$A=2 e-3 n o=4, z o$
$A=4 e-3 n o=4, ~ z o$

 $A=1 \mathrm{e}-4$, no $=4$, yo
$\mathrm{A}=5 \mathrm{e}-4$, no $=4, \mathrm{zo}$
$\mathrm{A}=1 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}$
$\mathrm{A}=2 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}$
$\mathrm{A}=4 \mathrm{e}-3 \mathrm{no}=4, \mathrm{zo}$

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} \overline{\delta F_{z}}+\frac{1}{\tau_{b}}\left[\frac{\partial}{\partial P_{\phi}} \overline{\left(\tau_{b} \delta \dot{P}_{\phi} \bar{F}_{z 0}\right.}\right)_{z}+\frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_{b} \delta \dot{\delta} \overline{F_{z 0}}\right)_{z}}\right]+ \\
& +\frac{1}{\tau_{b}}\left\langle\frac{\partial}{\partial P_{\phi}} \overline{\left(\tau_{b} \delta \dot{P}_{\phi} \delta F\right)_{z}}+\frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_{b} \delta \dot{\mathcal{E}} \delta F\right)_{z}}\right\rangle_{F}=\overline{C g}_{z}-\overline{C g}_{z_{0}}+\langle\bar{S}\rangle_{F}
\end{aligned}
$$

- IMAS-based orbits data-base and QL orbit averaged particle response implemented
- next: import distribution with weights and bin to get QL fluxes, or project markers on 3D function
- speed up, neglect markers with small transport, parallelisation issues (no MPI version of IDS)
- validation: 'replay' transport of set of markers with time dependent amplitudes as given by full HAGIS2 simulation
- can be used to check diffusive vs convective model, different mode spectra
- work on various intensity closures, PSZS model implementation with M. Falessi
- orbit database in appropriate shape to use bounce-averaged collision operators [Brizard, Slaby/Kleiber, Hoppe etc] i.e. pitch angle on outboard mid plane and average radial positions are available - use RABBIT formulation?

[^0]: \qquad
\qquad

 \qquad

