

Testing of Liquid-Sn Divertor Prototype: IPP Contribution

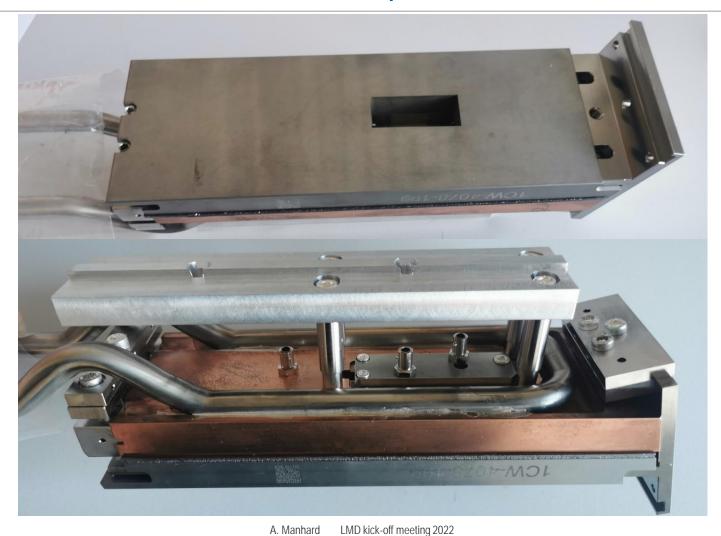
A. Manhard, H. Greuner, A. Herrmann, K. Krieger, V. Rohde, R. Neu, M. Balden, Th. Schwarz-Selinger

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Introduction

- Goal: Test liquid-Sn divertor component prototype in high-power tokamak
 - ➤ Divertor manipulator of ASDEX Upgrade
- Necessary preparatory groundwork
 - ➤ Establish boundary conditions for successful testing of liquid-Sn component in ASDEX Upgrade In progress...
 - ➤ Design suitable prototype sample Done!

 Un collaboration with TU/e and DIFFER
 - > High heat flux testing of component in GLADIS testbed (IPP) Awaiting sample...
 - ➤ Design suitable ASDEX Upgrade discharge To be done...
- Actual ASDEX Upgrade tests will be part of IPP internal experiment programme
 - ➤ One day in summer 2022, in last days before extended maintenance opening of ASDEX Upgrade Approved!
 - ➤ No EUROfusion budget allocated for this


Sample & holder design decisions

- 3-D printed CPS sample manufactured by DIFFER ✓
- IPP: Divertor target plate and holder modified according to requirements ✓
 - ➤ Slot in <u>TZM</u> target plate to accept CPS sample & Langmuir probes
 - ➤ Additional TZM witness plate mounted on 2nd position of divertor manipulator ¬TZM allows easy detection of Sn!
 - ➤ Holder/substructure modified to accept
 - ♦ Electric heater for pre-heating of CPS to melting point of Sn
 - \$Thermocouple connectors
 - \$Langmuir probe connectors

Sample holder for AUG Divertor manipulator: fabricated

GLADIS tests prior to ASDEX Upgrade experiments

- 1) Dry tests of CPS & holders at reduced power to test functionality & fail-safe conditions
- 2) If 1) successful: infiltrate CPS with Sn, repeat tests up to full planned load ➤ Start at low load (~0.5 MW/m²), stepwise increase up to ~10 MW/m²
- 3) Depending on outcome of 2): Discuss testing of alternative CPS concepts ➤ E.g., W felt concept by ENEA; relies on Sn filling to provide thermal contact of CPS to heat sink! ♦ Cannot be tested in "dry" condition due to expected overheating of W felt!
- Successful GLADIS testing remains essential for final go-ahead in AUG!

Logistics

- Cloud repository was set up at IPP for efficient sharing of data between IPP and DIFFER
- Dry 3-D printed CPS sample is being shipped from DIFFER to IPP
 - ➤ Parcel currently delayed in mail service...
- Wetting of CPS after first round of tests
 - ➤ Checking possibility to wet CPS at IPP

 ♦ Probably technically not feasible with parameters established by DIFFER and industrial partner
 - ➤ Alternative: Send CPS back to DIFFER for wetting after 1st round of GLADIS tests

Summary

- DIFFER TU/e develop and manufacture liquid Sn divertor prototypes
 - ➤ IPP provides interface information for GLADIS and ASDEX Upgrade
 - > IPP has manufactured/adapted divertor manipulator sample holder (TZM tile + substructure)
- IPP: HHF testing of liquid Sn prototypes
 - ➤ 1st campaing: dry testing of CPS component optimized for GLADIS tests with full AUG set-up
 - ➤ 2nd campaign: testing of Sn-filled CPS in full AUG set-up
- IPP: Design of ASDEX Upgrade experiments
 - ➤ Determine optimal set of diagnostics → available/desired diagnostics established
 - \triangleright Design discharges for testing liquid Sn components \rightarrow basic idea stands, details after GLADIS tests
- ASDEX Upgrade experiments: internal programme in collaboration with TU/e and DIFFER
 - ➤ 1 full experiment day scheduled