

ENABLING RESEARCH PROJECT ENR-MAT.01.VR

Electronic interactions of slow ions and their influence on defect formation & sputter yields for plasma facing components

<u>E. Pitthan</u>¹, M. V. Moro¹, J. Shams-Latifi¹, P. M. Wolf¹, B. Bruckner¹, T. Tran¹, D. Moldarev¹, P. Ström¹, and D. Primetzhofer¹, P. Petersson², M. Rubel², C. Cupak³, M. Fellinger³, F. Aumayr³, L. C. Curtil⁴, T. Malykhina⁴, and A. Sand⁴

¹Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden ²Department of Fusion Plasma Physics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden ³TU Wien, Institute of Applied Physics, Fusion@ÖAW, 1040 Vienna, Austria ⁴Department of Applied Physics, Aalto University, Aalto, Espoo FI-00076, Finland EUROfusion Science Meeting on Status of Enabling Research Projects, 28th of September 2022

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Eurotom Research and Training Programme (Grant Agreement No 10105200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Outline

□ Aim;

- □ Working-packages & team;
- □ Main results obtained & work in progress;
- □ Achievement of Scientific Deliverables foreseen for 2022;
- □ Activities foreseen for 2023.

Aim

- To investigate underlying quantities fundamental for sputtering and defect formation from plasma-wall interaction:
 - \rightarrow Energy deposition of plasma species in wall materials.
 - \rightarrow Interaction potentials with wall species.

key input variables for computer codes used to model erosion and implantation in plasma facing components.

Synergistic study:

- Experimental measurements with high accuracy.
- Theoretical calculation from first principles.
- To assess the sensitivity of these quantities to the presence of defects (ion irradiation).
- Benchmark the fundamental quantities by measuring sputtering yields with high accuracy.
- Materials:

 \rightarrow ITER-grade W, Fe and EUROFER steel.

Working-packages

QCM set-up at UU. Sputtering yield and angular distribution of pristine Fe, W, and EUROFER 97 samples. BCA-based simulations (SDTrimSP).

Team

VR	ÖAW	VTT
Eduardo Pitthan (PI)	Christian Cupak	Andrea Sand
Jila Shams-Latifi	Martina Fellinger	Ludovico Caveglia Curtil
Petter Ström	Friedrich Aumayr	Tetiana Malykhina
Per Petersson		

Start: May of 2021.

VR main tasks: Sample preparation and characterization, electronic loss measurements, interatomic potential measurements, and ion irradiation experiments.

ÖAW main tasks: Sputtering yield measurements, and BCA-based simulations.

VTT main tasks: Computational modelling (simulations of electronic stopping power & ion implantation).

Aalto University E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 5

W-P 2: Sample preparation

Characterization of the chemical composition of the pristine samples (Fe, W, EUROFER) by combined ion beam based techniques (UU), as a protocol for the standard quality control.

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 6

Experimental stopping cross-section of pristine Fe, W, and EUROFER97

M. V. Moro et al., Nucl. Instrum. Meth B 498 (2021).
 C. C. Montanari et al., Phys. Rev. A 80, 012901 (2009).
 M. J. Berger, et al., Report 49, Oxford Academic (1993).

Experimental stopping cross-section of pristine Fe, W, and EUROFER97

MEIS and MeV Range [1]: Good agreement with experimental and SRIM 2013 (up to 3.5% for protons and 4.0% for He). **LEIS:** Discrepancies from SRIM-2013 up to 20% for protons and 60% for He (good agreement with ICRU49).

[1] M. V. Moro et al., Nucl. Instrum. Meth B 498 (2021).

[2] C. C. Montanari et al., Phys. Rev. A 80, 012901 (2009).

[3] M. J. Berger, et al., Report 49, Oxford Academic (1993).

Experimental stopping cross-section of pristine Fe, W, and EUROFER97

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 10

Experimental stopping cross-section of pristine Fe, W, and EUROFER97

$H^+ \rightarrow Fe$

- \rightarrow Good agreement at MeV range.
- \rightarrow Large discrepancy with SRIM around maximum (up to 11%).
- \rightarrow Large discrepancy with SRIM at low energy range (up to 20%).

He⁺ → Fe

- \rightarrow Good agreement at keV/MeV range within 6%.
- \rightarrow LEIS: discrepancy up to 26%.

Experimental stopping cross-section of pristine Fe, W, and EUROFER97

H^+ , $He^+ \rightarrow EUROFER97$

- \rightarrow EUROFER97: similar SCS to Fe.
- \rightarrow No clear deviation from Bragg's rule

In progress (this year):

- \rightarrow EUROFER97 SCS at LEIS (absolute and relative approach).
 - E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 12

W-P 4: Interatomic potential measurements

LEED, W(110), 100 eV

- In the LEIS regime (1-10 keV): \geq
- Scattering potential (Thomas-Fermi-Molierè): \geq

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \cdot \Phi(\frac{r}{a})$$
Screening function
$$a = c_a a_f$$
Screening lenght

Screening correction factor (empirical)

For a given θ :

 $c_a < 1 \rightarrow$ smaller scattering cross-section.

The plan:

Measuring the interatomic potential of W, Cr, and Fe by comparing angular LEIS scans with KALYPSO simulations. **Experiment:**

- W(110) sample
- Multiple cycles of sputter cleaning and annealing
- Azimuth scan from 0° to 132° using 3 keV He⁺ ٠

Experiments and simulations are in progress. Simulations:

- Using KALYPSO, a software for molecular dynamics simulation of atomic collisions in solids.
- Using Thomas-Fermi-Moliere potential under different ٠ corrections.

Azimuth Angle [°]

QCM (Quartz Crystal Microbalance) set-up with low noise and high sensitivity for mass changes (\approx 90 pg/cm²/s). [1,2]

Preparation:	At TU Wien, new electronics and hardware components constructed.	
Installation:	TU Wien campaign by C. Cupak and M. Fellinger (October 2021).	
Features:	In-situ mass-change measurements and subsequent IBA (RBS, ERD).	
Tests:	Investigation of the formation of photochromic films (33104 at EUROFusion Pinboard)	
	[1] G. Havderer et al. Rev. Sci. Instrum. 70, 3606 (1000)	

[1] G. Hayderer et al., Rev. Sci. Instrum. **70**, 3696 (1999) [2] R. Stadlmayr *et al.* Rev. Sci. Instrum. **91**, 125104 (2020)

[3] G. Sauerbrey, Z. Physik 155, 206-222 (1959)

Development of a SDTrimSP-GUI

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 15

SDTrimSP-GUI

Static calculations:

- Incidence angle sweeps
- Ranges and vacancies
- Particle emission vectors

Dynamic calculations:

• Sputter yields, composition,...

Large benefit for ENR project (parameter tuning,...)

Paper published in NIMB [1]

[1] https://doi.org/10.1016/j.nimb.2022.04.008

Analytical model for roughness

- nm-roughness can affect sputtering
- Relevant when comparing numerical ٠ and experimental results
- Analytical model established to predict sputtering effects for (Gaussian) rough surfaces
- Paper published in Surf. Interfaces [2]

70 80 Mean Inclination Angle δ_m [°]

2keV Ar on W, 0° incidence angle

 \rightarrow can be used to consider effects for our data, based on surface roughness parameter δ_m

[2] https://doi.org/10.1016/j.surfin.2022.101924

QCM experimental data on W sputtering

- Flat W, sputtered by 2 keV Ar⁺
- Local minimum at 30° observed
- Channeling effects in a (poly) crystalline sample suggested
- Also observed for D⁺ irradiation
- XRD and EBSD measurements ongoing

Outlook:

- QCM experiments with EUROFER-97
- IMSIL simulations (BCA sputter code with crystallography features)
- MD simulations (A. Sand)

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 18

Formation and characterization of thin films from EUROFER97 target In collaboration with P. Petersson and M. Rubel [1]

Sputtering target (2 inches): EUROFER97

Sputtering conditions: $P_{base} = 7.1 \times 10^{-8}$ mbar $P_{Ar} = 5.61 \times 10^{-3}$ mbar $f_{Ar} = 10$ sccm P = 25 W Rate_{QCM} = 4.91 nm/min

From SIMNRA: Similar composition to bulk.

	At. content (%)		
	Sputtering	Bulk (nominal)	
Fe	88.7	88.9	
Cr	11.0	9.5	
W	0.3	0.3	

Formation and characterization of thin films from EUROFER97 target In collaboration with P. Petersson and M. Rubel [1]

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 20

Electronic SCS of thin films from EUROFER97 target

 \rightarrow SCS based on the width of spectra in comparison to SIMNRA simulations (absolute approach).

 \rightarrow Similar behaviour in comparison to relative approach (within 5%).

 \rightarrow Similar SCS trend between bulk and redeposited EUROFER97.

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 21

W-P 6: Ion-irradiation experiments

self-irradiation \rightarrow High levels of displacement damage without impurities. **Ion Energy** \rightarrow High levels of displacement damage within depth from SCS evaluation window.

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 22

W-P 6: Ion-irradiation experiments

TRIM simulation:

W-P 7: Computational modelling

Ion backscattering with MDRANGE (D7.3)

- Principle of MDRANGE: efficient ion range calculations by considering only small region of target in MD framework
- · Explicit atomic positions and lattice structure, many-body collisions
- · Currently, electronic stopping determined from SRIM model
- Preliminary calculations of test case: 190 keV He on W
 - · Limited statistics: 50k ions
 - Plot A shows backscattered ions (frozen soon after exiting surface at z=0, with target material extending in the positive z-direction)
 - Plot B shows energy distribution of backscattered ions
- Modification of MDRANGE code in progress
 - More efficient output of backscattered ions (computations are fast, but existing output options not designed for backscattering)
 - Aim: obtain full trajectories of backscattered ions
 - Target completion: Oct 2022
- Future work:
 - Include TDDFT-calculated electronic stopping (obtained in D7.1 and D7.2)
 - Experimental ion energies and targets
 - Statistics: >1M ions for each case

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 24

W-P7: Computational modelling

Sputtering with MD simulations (D7.4)

- Classic MD with el. stop. as friction force from SRIM 2013, shown to affect sputtering (plot C)
- Simulation cell: ~16k Fe + 1 D atoms, equilibrated at 300K
- LAMMPS MD code + EAM interatomic potential
- N=5000 Monte Carlo-style simulations per angular step, varying ion azimuthal angle and impact point
- Preliminary results (250eV D on Fe):
 - Plot D: dependence of sputtering yield on ion incidence angle, for 3 low-index orientations (<100>, <110>, <111>) in pristine crystal
- Ongoing work:
 - Additional low-index orientations in pristine crystal (<211>)

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 25

W-P 7: Computational modelling

- Electronic stopping power from rate of change of total energy of the system, with ion travelling at constant velocity
- Simulation cell: 3x3x4 supercell (72 Fe + 1 H atoms), lattice constant *a*
- Qb@II TDDFT code + LDA norm-conserving pseudopotentials
- Preliminary results (H on Fe):
 - Plot E: stopping power along <100> channel, for two impact parameters b and three ion energies
- Ongoing work:
 - · Incommensurate trajectories
 - Channeling trajectories with smaller b

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 26

Summary

Milestones achieved:

2021:

- **M2.1** \rightarrow Sample characterization: pristine samples.
- **M3.1** \rightarrow Experimental energy loss results from pristine PFCs samples (keV regime).
- **M5.1** \rightarrow QCM set-up assembling at UU.

2022:

- **M2.2** \rightarrow Sample characterization: damaged samples.
- **M2.3** \rightarrow Periodically quality control cross-checks.
- **M3.2** \rightarrow Experimental energy loss results from pristine PFCs samples (sub-keV regime).

Summary

In progress:

2022:

M5.1 → Comparisons on the experimental sputtered yields between pristine Fe, W, EUROFER samples to Monte Carlo-based BCA simulations using input data from energy loss and interatomic potential.

M7.1 \rightarrow Ab-initio calculations for energy loss and comparison to results: pristine samples.

M7.3 \rightarrow Implementation of geometrically dependent electronic energy losses in the MDRANGE ion range code.

Summary

Future milestones (2023 & 2024):

M3.3 \rightarrow Experimental data from damaged W & Fe.

M3.4 \rightarrow Experimental data from damaged EUROFER.

M4.1 \rightarrow Determination of short-range interactions from experimental spectra and BCA calculations.

M4.2 \rightarrow Comparison of the short range interactions for pristine vs. damaged samples: defects influence.

M5.2 \rightarrow Benchmarking sputtering yield codes with input data from WP3 and WP4.

M5.3 → Evaluate how sensitive the sputtering yield is in terms of energy loss and interatomic potential when local defects and impurities (i.e. damaged samples) are present.

M6.2 \rightarrow Depth profile of the irradiated Fe, W and EUROFER samples suitable for WP4.

M7.2→ Ab-initio calculations of damaged samples and comparison to experiments: local effects on the fundamental quantities.

M7.4 → Comparisons of predicted and experimentally measured electron energy losses for input into MD based simulations.

M7.5 \rightarrow Experimentally deduced short range interactions as inputs for MD based simulations of sputtering yield.

Extras

W-P 6: Ion-irradiation experiments

TRIM simulations

E. Pitthan | EUROfusion Science Meeting | Virtual | 2022-09-01 | Page 31

H and He on Pristine Fe and W: Velocity dependence in low energy range

Name of presenter | Conference | Venue | Date | Page 32

