

SP B.4: Reference coatings for ITER and DEMO

JSI activities in 2022: XPS analysis of selected Be-D samples

Matjaž Panjan, Janez Kovač Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan Institute

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

XPS analysis of selected Be-D samples

- **Task:** Demonstrate the value of XPS technique for Be-D analysis. Possibly observe nature of chemical bond between Be and D.
- **Samples:** Be-D thin films with 5% and 10% of D prepared by magnetron sputtering using different substrate temperatures

sample	60190520_2_3	60190523_2_3	60190515_2_3	60190527_2_3	60190607_2_2
thin film	Be-D	Be-D	Be-D	Be-D	Be-D
thickness	5 µm				
D (at.%)	5 %	5 %	10 %	10 %	10 %
substrate	tungsten	tungsten	tungsten	tungsten	tungsten
sample photo	6	<u>C.</u>			
preparation method	reactive DC magnetron sputtering				
gas mixture	Ar/D	Ar/D	Ar/D	Ar/D	Ar/D
substrate temperature	room temperature	400 °C	room temperature	200 °C	JET-like T cycle ~60s: 60°C → 200°C ~540s: 200°C → 60°C

X-ray photoelectron spectroscopy

Principle of XPS measurements

Information obtained from XPS spectra

- identification and quantification of elements (except H, D and He)
- chemical state of elements
- depth profiles when combined with ion-etching

XPS surface analysis of Be-D samples

Depth profiles of Be-D samples

Depth profiles of Be-D samples

- · Similar depth profiles for three analyzed samples
- **BeO** thickness ~4-5 nm. More oxygen present in sample deposited at 400 °C
- Carbon is present on the surface as contamination and as carbide in subsurface region (~3-6 at.%)
- Nitrogen is present as nitride in subsurface region (1-2 at.%)