

Status of the EP-WF, development towards CG and kick models with applications to AUG, SA and JET

Ph. Lauber, V.-A. Popa, T. Hayward-Schneider

TSVV#10 progress meeting 3.5 2022

1

1. ASDEX Upgrade

Status EP MHD 22.2.2022

AUG-IMAS modelling: EP driven modes change bursting characteristics during slow L-H transition in hydrogen: discharge stays in L mode despite 5MW heating

July 2021

IPP

model transition using time-dependent EP workflow using trview-IMAS interface

160 time slices based on IDA largely automated analysis (except visualisation)

presently working on NBI EP

ready for:

coupling to transport codes systematic UQ, 'error bars' scenario optimisation

problem: deal with incomplete data (e.g. beam blips missing for Ti) IDS merger tool (V.-A. Popa)

AUG observation: switching on core ECCD at 3.5s, n=2 TAE disappears

ITER helena IMAS version

LIGKA mode 6

LIGKA-CASTOR comparison: differences of WFs due to different q's in reconstructed eq - to be resolved

LIGKA

TSVV#10 progress meeting 3.5 2022

CASTOR

n=2 TAE eigenfunctions - similar, but different equilibria lead to observed differences

LIGKA-CASTOR comparison: differences of WFs due to different q's in reconstructed eq - to be resolved

t=3.21

can be resolved by re-reading helena-written IDS by different eq-codes (now experience with chease->helena)

2. JT-60SA

TSVV#10 progress meeting 3.5 2022

11

TSVV#10 progress meeting 3.5 2022

JT-60SA: successful coupling of EP WF to JINTRAC output (scenario 2, 70000,419) [L Garzotti]

JT-60ASA: successful coupling to JINTRAC output (scenario 2, 70000,419) [L Garzotti]

3. JET

TSVV#10 progress meeting 3.5 2022

14

pp

JET: repeated damping study of AEs for predicted DT scenario after 2010 ITPA effort - similar results.

analyse ion and electron contributions, structure of mode structures and $E_{I/2}$

TSVV#10 progress meeting 3.5 2022

What is the role of KAWs for the damping of low-n TAEs?

adding step by step electron resonances: no electron LD damping:

 $\gamma/\omega = -0.16\%$ (ion LD)

adding circulating k=0 resonance:

 $\gamma/\omega = -0.67\%$ (ion LD+circ el)

adding circulating k=±1 sidebands:

 $\gamma/\omega = -0.77\%$ (ion LD+circ el+sb)

adding trapped electrons:

 $\gamma/\omega = -0.87\%$ (ion LD+all el)

JET: analysis of damping mechanisms [Lauber, AAPPS-DPP 2021]

adding step by step electron resonances: no kinetic electron damping:

 $\gamma/\omega = -0.16\%$ (ion LD)

adding circulating k=0 resonance:

 $\gamma/\omega = -0.67\%$ (ion LD+circ el)

adding circulating k=±1 sidebands:

 $\gamma/\omega = -0.77\%$ (ion LD+circ el+sb)

adding trapped electrons:

 $\gamma/\omega = -0.87\%$ (ion LD+all el)

to k//=0

missing trapped electrons lead to weakly damped region close

adding step by step electron resonances: no electron LD damping:

 $\gamma/\omega = -0.16\%$ (ion LD)

adding circulating k=0 resonance:

 $\gamma/\omega = -0.67\%$ (ion LD+circ el)

adding circulating k=±1 sidebands:

 $\gamma/\omega = -0.77\%$ (ion LD+circ el+sb)

adding trapped electrons:

 $\gamma/\omega = -0.87\%$ (ion LD+all el)

smooth structure - KAW coupling visible in E// mode structure differs from MHD result - **non-perturbative**

JET: analysis of damping mechanisms

TSVV#10 progress meeting 3.5 2022

towards EP transport models

towards EP transport: HAGIS2 as library is crucial element for various transport models

distributions IDS holds all orbit-averaged information about marker space - fast, repetitive calls are possible [A. Bierwage, CPC 2022, LIGKA orbit integrals, CPC 2007] 'finder' routine to set up marker space, determine trapped-passing bnd, sort, classify and select particles,... now full implemented in IMAS, also with extended IDS structures etc, MDS+ limitations (2GB) identified TSVV#10 progress meeting 3.5 2022

21

towards EP transport: HAGIS2 as library is crucial element for various transport models

distributions IDS holds all orbit-averaged information about marker space - fast, repetitive calls are possible [A. Bierwage, CPC 2022, LIGKA orbit integrals, CPC 2007] 'finder' routine to set up marker space, determine trapped-passing bnd, sort, classify and select particles,... now full implemented in IMAS, also with extended IDS structures etc, MDS+ limitations (2GB) identified TSVV#10 progress meeting 3.5 2022

 apply to F_{EP}(Pz,E,mu) using various (diffusive, convective,...) 'Ansätze' • extend to 4D i.e. including amplitude - opens path to intensity closure models • pass either F_{EP} or moments back to transport codes

implementation of PSZS transport models - here: kick-model limit (ITER case)

[M.V. Falessi, 2017-2022, ENR ATEP project]

calculate <dPz/dt> , <dE/dt> for given fixed mode structures at fixed amplitude:

dPz/dt (Pz,E), Lambda=845 [*100]

- first application to JT-60SA, scenarios will be available soon
- ITER scenario studies ongoing [V.A. Popa, IAEA TCM Data Analysis, Dec 2021]
- JET-TAE studied in [Ph. Lauber AAPPS-DPP, 2021], no WF application so far
- DEMO: start to test EP-WF on a few generic scenarios to be determined soon
- further needs:
- interfaces between experiments and IMAS databases (JET, JT-60SA)
- consistently filled IDSs (core_profiles, equilibrium, distributions)
- error analysis and UQ is now possible
- reproducibility; IMAS based orbit data-base routines available [Bierwage et al 2021]

outlook

• EP -WF also successfully applied to TCV [M. Vallar] - some EAE problems of WF to be resolved

depending on smoothness, interpretative transport runs necessary - IDA analysis is sufficient

set of standardised smoothing/fitting tools for exp. data, in particular EP distribution functions -

