

MHD stability of JT-60SA Initial Scenarios

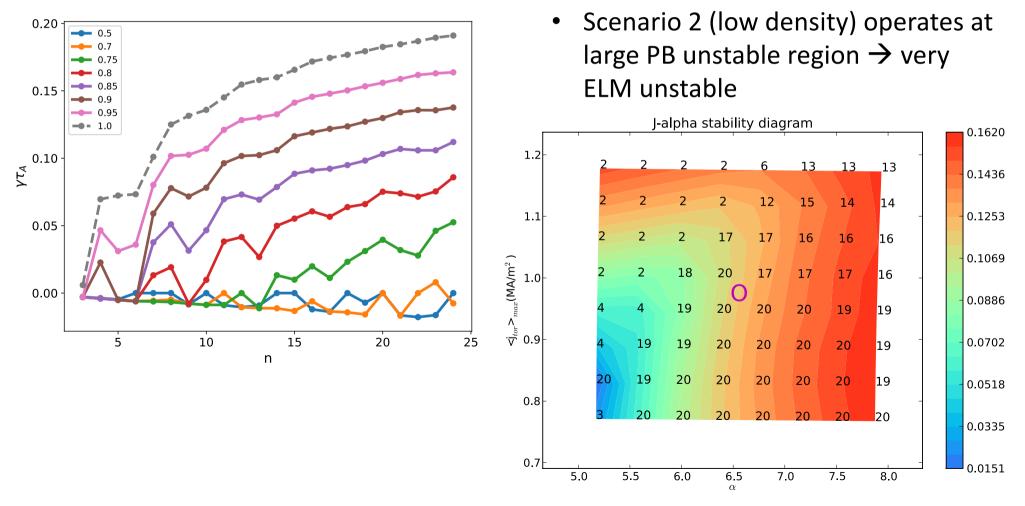
R. Coelho

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation and goals

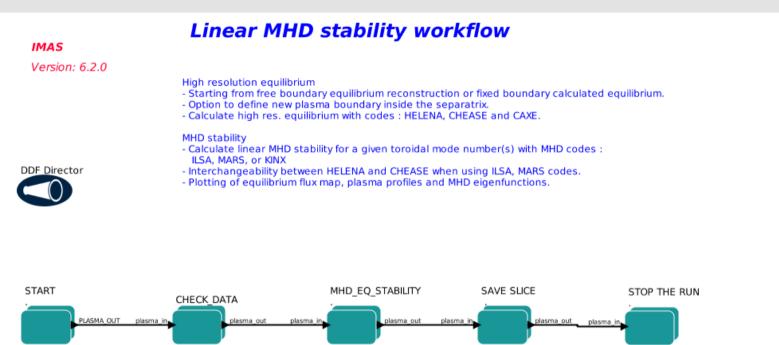
- Investigate MHD stability of Initial research phase scenarios of JT-60SA
 - JT-60SA initial research phase I and II, in H and D, with reduced power and C-PFC are "approaching"
 - Despite the "reduced power", it entails already 33 MW (N-NB of 10 MW, P-NB of 20 MW, ECRF of 3 MW). The high heating power and high plasma current will enable access to the ITER and DEMO regimes of β N, f_{BS} , $\rho^* v^*$ and electron heating ratio !
 - It is relevant to characterize the *hierarchy* of potentially hazardous *MHD modes* (from internal kink in the deep core up to peeling-ballooning at the pedestal) i.e. which modes dominate ?
- Use routinely MHD stability workflow for the analysis
 - Provide training on usage

Summarizing Scenarios 2-5



- In *all scenarios* q₀<1 so *ST activity* is already accounted for.
- In all scenarios pedestal pressure and J_{BS} is noticeable → ELM-y plasmas
- Scenarios 2-3 (fully non-inductive, highest I_p) have noticeable plasma pedestal pressures/currents \rightarrow PB pedestal dominated $(\gamma \tau_A \sim 0.12 \ for \ scenario2, \ scenario3 \ less \ unstable)$.
- Scenario 4 (hybrid, internal ion temperature ITB) is dominated by ideal infernal-ballooning very unstable modes ($\gamma \tau_A \sim 0.2$ at highest ∇p region), PB at $\gamma \tau_A \sim 0.07$
- Scenario 5 also unstable to internal ballooning modes $\gamma \tau_A \sim 0.08$ (for n=30, $n \rightarrow \infty$ might hover ~0.12 though)

Some highlights



• Scenario 4 (hybrid-ITB) needs 30% drop in β_N to stabilize modes at ITB.

R. Coelho | MHD stability on JT-60SA | May 2022

Toolset to be used

Documentation: <u>https://iterphysicswiki.euro-fusion.org/index.php?title=EQSTABIL_workflow_documentation</u> <u>https://wpcd-workflows.github.io/es.html</u>

- Consolidated workflow for single mode ideal MHD stability (ITM/WPCD)
- Large case basis (JET, AUG, TCV, JT-60SA)
 - Ideal for training
- Seamless link to the ETS (very similar plasma bundle structure)
- KEPLER → AutoGUI based interface (same as ETS workflow)
- Python → GUI based workflow being consolidated (*amenable for j-alpha analysis*)

AutoGUI based workflow

 Saved parameter file fully embeds workflow settings + code parameters ensuring subsequent *traceability* & *reproducibility*

nitialisation Configuration	Post Processing
user_name	g2rcoelh
machine_name	tcv
shot_number	63540
input_run	81
output_run	13
run_work	9999
time in	1.0

- Fully *multi-device* compatible
- <u>Multi-code</u> compatible
- Visualization of results included
- Interactive/batch execution

nitialisation Config	uration Pos	st Processing			
itialisation comy	uradon Pos	it Processing			
Operation Mode	quilibrium I	MHD Dump			
		10 I St			
HREcode		ï	HELENA	T	Code Parameters
					code i di di li i coloro
		i	a a su an		
Visualise_HRE			yes		
			yes no	 	
Visualise_HRE			al case of	• •	

Modelling plans

- Obtain the plasma scenarios from JETTO/ETS (preferably in IDSs)
- Perform the stability scan at *time slices of interest* (ramp up, flat-top, pre/post heating transitions,...) for the *"community"*.
 - Focus on core modes but pedestal might also be considered though flat top might be pre-set/piloted to marginal stability (?)
- Determine MHD limits if required e.g. beta limits (*RWM excluded*)