

04/05/2022

Giulio Rubino

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

Main goal and general overview

Grid sensitivity study

Preliminary comparison

Current status and future work

G. Rubino | WPSA General Meeting | 04 May 2022 | Pag. 2

Main goal and general overview

SOLPS-ITER/SONIC benchmark with a step-wise approach

Grid sensitivity: discretization error

3 different poloidal resolutions taken into account

- P_{SOL} ~ 6MW and n_{e,sep} ~ 2e19 m⁻³
 Increase in the computational time (more than linearly) by increasing poloidal resolution
- Assessment of discretization error ε_{discr}
 [K. Ghoos et al 2019 Nucl. Fusion]

	Fluid neutral			EIRENE		
	Coarse	Ref.	Fine	Coarse	Ref.	Fine
Ediscr(%)	51.8	32.8	20.7	56.8	38.7	26.8

G. Rubino | WPSA General Meeting | 04 May 2022 | Pag. 4

Grid sensitivity: resolution adequacy

> Assessment of the poloidal resolution to gradient ratio: $\lambda_{\Phi} / \Delta x$, $\lambda_{\Phi} = |\Phi/\nabla \Phi|$

> Reference grid resolution suitable to describe poloidal gradient $(\lambda_{\phi} / \Delta x > 2 \text{ in few cells along separatrix and close to inner target})$

Trade-off between the accuracy of the solution and the computational time

Preliminary comparison in pure D

- Comparison in pure D and partially detached
- Good agreement between SONIC and SOLPS-ITER
- Close collaboration with QST team is necessary for further investigation and assessment of the differences

➢ Pure D comparison:

- Attached plasma ($P_{SOL} \approx 30 \text{ MW}$) converged \rightarrow Waiting for SONIC results to perform the comparison
- Possible publication with results of Pure D comparison including initial grid sensitivity study
- D + intrinsic C
- \checkmark o Definition and verification of the setup performed
- $\overline{\mathbf{X}}$ o Simulations are ongoing
 - $\circ~$ Definition of the numerical values (e.g. Y_{chem}) to use
- Future Plan
 - Compare pure D in both attached and detached cases with a deep insight the numerical results difference
 - Setup impurity seeded cases (Ar) in collaboration with QST team

Thank you for your attention