4th of May 2022

Modelling of C wall Scenario 2 with SOLPS-ITER - status and plans

<u>P. Chmielewski¹, M. Jabłczyńska¹, L. Balbinot², G. Falchetto³, K. Gałązka^{1,3}, G. Rubino², the WPSA team et al.</u>

¹ Institute of Plasma Physics and Laser, Microfusion, Hery 23 Street, 01-497 Warsaw, Poland

² ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, via E. Fermi 45, 00044, Frascati, Italy

³ CEA Cadarache 13108 Saint Paul-Lez-Durance Cedex, France

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Modelling of C wall Scenario 2

- Introduction
- Modelling assumptions
- Simulations results
- Summary
- Plans

© 2022 European Joint Undertaking for ITER and the Development of Fusion Energy ('Fusion for Energy')

Studies performer in this project are a continuation of the plasma simulations for JT-60SA made in former WP with the COERDIV code which couples the central and SOL plasma

COREDIV simulations of SCN#2 with Ne/Ar/Kr seeding

R. Zagórski et al., NF 2016; K. Gałązka et al., 2018.

P. Chmielewski | WPSA | 4 May 2022| Page 3

Introduction

Motivations

- Studies of the power exhaust problem with seeded impurities
- JT-60SA auxiliary heating in scn#2: 41 MW
- maximum power density to target: 10 MW/m²
- need to radiate out about 20-30 MW
- Therefore, there is need of the detailed studies of the power mitigation in the SOL and plasma deposition at the target plates
- Studies with boundary plasma code have been started (the SOLPS-ITER code package)

Modelling assumptions

- Simulations have been performed with SOLPS-ITER (multifluid B2 code coupled with Eirene MC code)
- Scn#2 is under consideration
- B2 numerical mesh consists of 50 x 36 cells (2021)
- Deuterium plasma with argon impurity
- Carbon divertor targets
- With physical sputtering of carbon targets
- No chemical sputtering

Modelling assumptions

- Applyed core-SOL boundary conditions:
 - P_{IN} = 21 MW (divided equally into electrons and ions)
 - density boundary condition: specified inner electron density equal to 3x10¹⁹ m⁻³
- Gas puffing:
 - Deuterium gas puff (outer valve)
 - Ar seeding above the outer divertor

B2 and Eirene mesh

Modelling assumptions

Diffusivity profiles

Radial profiles of the particle density diffusivity and electron heat diffusivity have been assumed on the basis of the L. Balbinot studies of JET discharges

D

2.5

2

Simulations results

Scans over the electron density at separatrix with low Ar concentration have been done

- Increase of the upstream electron density with raise of the deuterium puff has been observed
- Low values of the electron temperature at the strike point
- Drop of T_e at the strike point with increase of the upstream density (inner and outer targets)
 P. Chmielewski | WPSA | 4 May 20

P. Chmielewski | WPSA | 4 May 2022| Page 9

Summary

Activities in 2021

- Numerical model for JT-60SA SCN#2 with carbon wall and deuterium plasma seeded with argon impurity have been prepared
- Scan over the upstream electron density at low Ar puff have been done

Activities done in 2022

- Corrections to the numerical model have been added
 - corrected radial transport profile
 - the inner core boundary have been changed from constant density to constant particle flux condition
- Resolution of the numerical mesh have been increased (100x36 cells)
- Ongoing studies with new model conditions for different values of the argon concentartion and the separatrix density

Plans

Refined B2 and

Eirene num, mesh

The aim is to analyse the effect of the argon seeding

- on the heat load mitigation,
- on efficiency of the argon and carbon radiation,
- on the carbon sputtering
- Scans for different argon concentrations and for different values of the separatrix density will be performed
- Limited investigations of the plasma detachment in JT-60SA for various argon concentrations will be done
- Power scan is under consideration
- Planned publication at the PET conference

P. Chmielewski | WPSA | 4 May 2022| Page 11

Thank you very much for attention!

Backup slides

P. Chmielewski | WPSA | 4 May 2022| Page 12

Simulations results

Simulations results

