

AE stability of Initial scenarios

R. Coelho

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation and goals

- Investigate Alfven mode MHD stability of Initial research phase scenarios of JT-60SA
 - JT-60SA initial research phase I and II, in H and D, with reduced power and C-PFC are "approaching"
 - Despite the "reduced power", it entails already 33 MW (*N-NB of 10 MW*, *P-NB of 20 MW*, ECRF of 3 MW). The high heating power and high plasma current will enable access to the ITER and DEMO regimes of βN, f_{BS}, ρ* v* and electron heating ratio !
- Can Alfven Eigenmodes be driven unstable in such scenarios ?
 - N-NB at 500keV is always relevant and grants access to most relevant Alfvén resonances → drive may be possible
 - Isotope differences H vs D
 - On JET H-beams on H-plasma could not drive AEs (*NBI inj.energy <160keV was clearly too low...*)
- Toolset: HELENA+MIHSKA+CASTOR-K suite with kinetic profiles from experimental/modelling data + energetic particles (parametrized or tabulated)

Previous highlights on AE stability

0.6

0.4

0.2

0.2

0.4

0.6

S[]

0

 $^{-1}$

-2

-3

1

2

3

R [m]

4

5

-1000

0.0

-2

-4

0.0

0.2

0.2

0.4

0.4

 $ho_{pol norm}$

q

 ho_{pol_norm}

0,6

0.6

0.8

0.8

1.0

R. Coelho AE stability on JT-60SA Scenarios May 2022

1.0

Previous highlights on AE stability

N-NB<0.3% ; P-NB<0.02%; thermal ~[0-6]% Thermal+P-NB+N-NB contibutions

R. Coelho AE stability on JT-60SA Scenarios May 2022

Modelling plans

- Obtain the plasma scenarios from JETTO/ETS (preferably in IDSs)
- Obtain/calculate (*collaboration with ETS / JINTRAC teams*) the NBI energetic particle deposition profiles and distributions using ASCOT
 - Use separately P-NBI and N-NBI
 - Convert to COM space
 - ACHTUNG: outcome is highly sensitive to "kinetic"/q plasma profiles → <u>solid</u> <u>agreement is envisaged</u>.
- Estimate drive/damping contribution from NBI ions using CASTOR-K hybrid MHD drift kinetic code. Estimate also thermal ion damping.