





#### WPSA General Meeting, 4<sup>th</sup> – 6<sup>th</sup> May 2022

## **Gamma diagnostics**

M. Nocente University of Milano-Bicocca, Milan, Italy







### **Contributors**

M. Nocente, G.Gorini

Department of Physics, University of Milano-Bicocca, Milan, Italy

M. Tardocchi, A. Dal Molin, E. Perelli Cippo, D. Rigamonti

Institute for Plasma Science and Technology, Milan, Italy

V. Kiptily, Z. Ghani

Culham Centre for Fusion Energy, Culham, UK



## **Outline**





- Gamma-ray spectroscopy: why and how
- Aim of the study
- 2021 results
- Plans for 2022



### Gamma-rays measure fast ions...





γ-rays are produced by **nuclear reactions** between **fast ions** and **impurities** 

 They can be produced in fusion reactions (I step reaction) or result from the de-excitation of a nucleus (II step reaction)

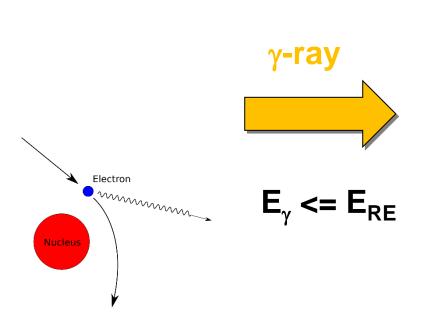
i) 
$$d + p \rightarrow {}^{3}He + \gamma$$
 (5.5 MeV) (fusion reaction)

$$\vec{e}_{\gamma}$$
  $\vec{v}_{nucleus}$ 

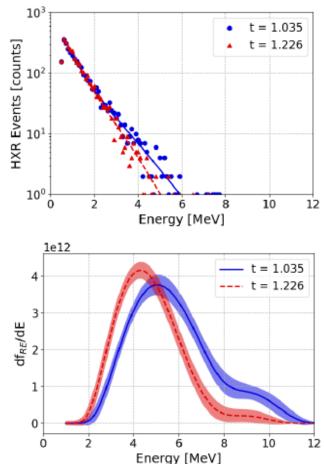
ii) 
$$\alpha$$
 +  ${}^{9}\text{Be} \rightarrow {}^{12}\text{C}^*$  + n,  ${}^{12}\text{C}^* \rightarrow {}^{12}\text{C}$  +  $\gamma$  (4.44 MeV) (two step reaction)

On JT-60SA gamma-rays could diagnose protons and deuterons from NBI heating




#### ... but also fast electrons






A. Shevelev et al. Nucl. Fusion (2013) 123004
A. Dal Molin, PhD Thesis, University of Milano-Bicocca, 2021

 Measurements of the bremsstrahlung radiation spectrum in the MeV range (γ-rays) are the natural way to gain information on the RE distribution function



Runaway electron distribution function can be retrieved by deconvolution of the data





## P Aim of the activity and contractual information





#### Aim of the activity:

a feasibility study of gamma-ray diagnostics for JT-60SA

#### **Eurofusion deliverable:**

SA.ENH.A3-T001-D001 (owner: M. Nocente)

Build strong scientific case based on scientific goals (JT-60SA, ITER and Demo) Focus: complement existing/planned diagnostics and studies (fast ions, runaway physics, disruption dynamics,...), in particular by indentifying synergies with neutron diagnostics.

#### Manpower:

- 3 PM shared between UNIMIB and ISTP

Coordinator: M. Nocente

- 1 PM CCFE

Coordinator: V. Kiptily



### Workplan





- Identify scenarios where gamma-ray measurements are necessary (eg. startup runaway monitoring in the initial phases, fast ion studies etc.)
- 2) Identify **preliminary operational requirements** (eg. need for impurity injection?) and **reactions** that are suitable for gamma-ray measurements at JT-60SA for fast particle studies.
- 3) Identify possible locations for the installation of gamma-ray spectrometers and the associated constraints
- 4) Preliminary evaluation of the **gamma-ray fluxes** expected at the installation locations
- 5) Preliminary definition of the detector types and dimensions
- 6) Define a scientific case supported by the technical evaluations above for gamma-ray diagnostics at JT-60SA



#### **Activity done in 2021**





- Identification of energetic particles/reactions that could/should be diagnosed in all the research phases of JT-60SA
- Identification of possible installation locations for gamma-ray diagnostics
- Preliminary evaluation of gamma-ray fluxes in at least one relevant scenario



### **STD** List of possible reactions so far for fast ion studies





Reactions suitable for proton studies (eg. 500 keV NBI)

| Reaction                                   | Resonance, keV | E <sub>γ</sub> , MeV | σ(E <sub>R</sub> ), mb |
|--------------------------------------------|----------------|----------------------|------------------------|
| <sup>7</sup> Li(p,γ) <sup>8</sup> Be       | 441            | 17.64                | 3.5                    |
| $^{11}{\rm B}({\sf p},\gamma)^{12}{\rm C}$ | 162            | 11.67 & 4.44         | 0.152                  |
| $^{12}C(p,\gamma)^{13}N$                   | 457            | 2.365                | 0.124                  |

Possible by Li – LiH/LiD pellet injection

#### Reactions suitable for deuterium studies (eg. 500 keV NBI)

| Reaction                                             | Q, MeV | E <sub>γ</sub> , MeV       | σ(500 keV), mb |  |
|------------------------------------------------------|--------|----------------------------|----------------|--|
| <sup>6</sup> Li( <mark>d</mark> ,nγ) <sup>7</sup> Be | 3.381  | 0.429                      | ~75            |  |
| <sup>6</sup> Li( <mark>d</mark> ,pγ) <sup>7</sup> Li | 5.026  | 0.478                      | ~40            |  |
| <sup>10</sup> B( <mark>d</mark> ,nγ) <sup>11</sup> C | 6.465  | 2.00, 4.319 & 4.804        | ~20            |  |
| <sup>10</sup> B( <mark>d</mark> ,pγ) <sup>11</sup> B | 9.230  | 2.125, 4.444 & 5.021 2.125 | ~1.5, 7 & 1    |  |
| <sup>11</sup> B( <mark>d</mark> ,pγ) <sup>12</sup> B | 1.145  | 0.953                      | ~10            |  |



# Research phases of JT-60SA and possible gamma-ray diagnostics contribution



| Research<br>phase             | Sub-<br>phase | Timeline      | Main<br>plasma<br>species | Positive NBI<br>(P-NBI)<br>power,<br>perpendicular<br>box (85 keV) | Positive<br>NBI (P-<br>NBI)<br>power,<br>tangential<br>box (85<br>keV) | Negative<br>NBI (N-<br>NBI)<br>power<br>(500<br>keV) |
|-------------------------------|---------------|---------------|---------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Initial<br>Research           | Phase I       | 2020-<br>2021 | Н                         | 0                                                                  | 0                                                                      | 0                                                    |
| phase                         |               | 2023          |                           | 3 MW                                                               | 3 MW                                                                   | 10 MW                                                |
|                               | Phase         | 2023          | D                         | 6.5 MW                                                             | 7 MW                                                                   |                                                      |
|                               | II            | 2024-<br>2025 |                           | 13 MW                                                              |                                                                        |                                                      |
| Integrated<br>Research        | Phase I       | 2026-<br>2028 | D                         |                                                                    |                                                                        |                                                      |
| phase                         | Phase<br>II   | 2030-         | D                         |                                                                    |                                                                        |                                                      |
| Extended<br>Research<br>phase |               | >5 y          | D                         | 16 MW                                                              | 8 MW                                                                   |                                                      |

Tentative timeline: conceptual design phase ends in December 2022; Detector is finalized and installed by end of 2023: Detector available at JT-60SA before 2024.

We can measure (at the earliest) from the initial research phase II. The headlines which can be addressed are:

H.II.1, H.II.2 and H.II.3



## **D** Identification of possible installation locations



Based on the interaction with the QST team during the RCM in October 2021, the detectors could be installated in **some** channels of the existing neutron emission profile monitor.



### **Preliminary evaluation of fluxes**



- A (very) preliminary evaluation of the fluxes has been made with the following assumptions:
  - 1) The source strength is the same as at JET when reactions are the same
- 2) The signal at the detector scales as 1/d<sup>2</sup> (d = 23 m at JET vs d=7 m at JT-60SA)
  - 3) For fast ion reactions, cross sections are lower by a factor 100

#### Result

- Gamma-ray emission from proton NBI is too weak to measure
- 2) Gamma-ray emission from deuterium NBI is comparable to typical gamma-ray counting rates at JET (≈kHz)
  - Runaway electrons are easily measured (comparable or higher emission than at JET)



#### Required input information





- In order to advance the conceptual design we need some input information
- Information on the geometry of the neutron profile monitor, including collimator size, available space etc.
  - Distribution function of deuterons from NBI
    - 3) Distribution function of protons from NBI
- 4) Some reasonable assumptions on the runaway electrons (eg. RE Current and tentative, good guess for their distribution)



#### Plans for 2022



- 1) Consolidated evaluation of gamma-ray fluxes at the installation locations
- Definition of the detector main specifications; possibility to use a detector than combines neutron and gamma-ray spectroscopy with a single instrument (inorganic scintillators with Clorine, eg. CLYC)
  - 3) Based on the results of 1)+2), identify the benefits for energetic particle studies coming from the use of these detectors







## THANK YOU FOR YOUR ATTENTION