Assessment of the PCI diagnostics measurement by synthetic diagnostics

Aylwin lantchenko¹, M.J. Pueschel², Stephan Brunner¹, Stefano Coda¹

¹ EPFL-SPC, Lausanne, Switzerland

² Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands

The scenario

EPFL

- Predicted JT-60SA discharge.
- **2** Double-Null with 41 (34 NBH + 7 ECH) MW heating \implies fast ions (Maxwellian at larger *T*).

Simulations at nominal parameters \implies too low heat flux

Turbulent heat flux should match injected power of 41 MW...

Total heat flux $< 1 \mathrm{MW}$

Simulations at nominal parameters \implies too low heat flux

Turbulent heat flux should match injected power of 41 MW...

Total heat flux $< 1MW \implies$ need to increase gradients.

Increasing gradients \implies non-saturation

Nominal β + large gradients \implies heat fluxes do not saturate due to the NZT

Increasing gradients \implies non-saturation

Nominal β + large gradients \implies heat fluxes do not saturate due to the NZT

So far only 2 species (D,e) \implies include impurities and fast ions.

Fast frequency mode is driven by fast ions

Including fast ions \implies heat flux is dominated by a high-frequency oscillation.

Fast frequency mode is driven by fast ions

Including fast ions \implies heat flux is dominated by a high-frequency oscillation.

 Next : Use results from the gyrokinetic simulations to predict PCI signals at JT-60SA

The PCI diagnostic

EPFL

In the Phase contrast imaging (PCI) set-up :

- A laser beam is sent through the plasma.
- Part of the beam is phase shifted by $\delta \varphi$.
- $\delta \varphi \propto \int_L \delta n_e \, \mathrm{d} z.$

S. Coda, Ph.D. Thesis, Massachusetts Institute of Technology (1997).

Prediction of PCI signals at JT-60SA

- 1 Take δn from GENE.
- Ø Define diagnostic volumes.
- (3) Integrate δn_e over the volumes $\implies \delta \varphi$
- Apply experimental transfer function.
- G Analyse like experimental data.

Prediction of PCI signals at JT-60SA

- 1 Take δn from GENE.
- Ø Define diagnostic volumes.
- $\textbf{S} \text{ Integrate } \delta n_e \text{ over the volumes} \\ \implies \delta \varphi$
- Apply experimental transfer function.
- G Analyse like experimental data.

EPFL Proposed work for 2022

- Finalise resolution study of larger gradient case.
- Improve prediction of the PCI signals
 - Simulations at different ρ.
- Prepare a publication.

EPFL Summary

- Gyrokinetic GENE simulations to estimate turbulent transport in a JT-60SA scenario.
- Nominal parameters \implies too low heat flux.
- NZT and fast ion driven high frequency mode.
- First PCI predictions.
- Future plan : improve PCI predictions and finalise results into a publication.

EPFL Summary

- Gyrokinetic GENE simulations to estimate turbulent transport in a JT-60SA scenario.
- Nominal parameters \implies too low heat flux.
- NZT and fast ion driven high frequency mode.
- First PCI predictions.
- Future plan : improve PCI predictions and finalise results into a publication.

Thank you for your attention !

Linear simulations of the most unstable mode

- ITG($\omega > 0$), TEM ($\omega < 0$) and ETG ($\omega < 0$).
- Stabilising : fast ions + impurities and β_e .
- Destabilising/Stabilising : δB_{\parallel} .

Linear simulations of the most unstable mode

- ITG($\omega > 0$), TEM ($\omega < 0$) and ETG ($\omega < 0$).
- Stabilising : fast ions + impurities and β_e .
- Destabilising/Stabilising : δB_{\parallel} .
- $\frac{\gamma}{k_y}|_{\text{ion}} \ll \frac{\gamma}{k_y}|_{\text{electron}} \implies$ limited multi-scale interactions.

Electromagnetic modes at $k_y \leq 0.2$

EPFL

Signature of microtearing like electromagnetic modes @ $k_y \leq 2$

