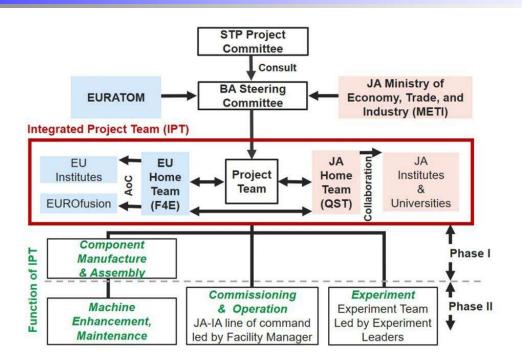
Experiment team

T-605

JT-60SA Experiment Team Leaders J. Garcia, M. Yoshida, H. Urano

Contents

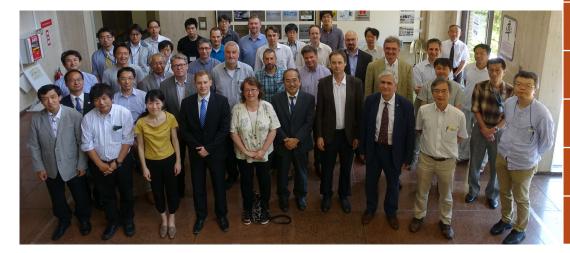
- 1. Previous structure and mission of JT-60SA
- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions


Contents

1. Previous structure and mission of JT-60SA

- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions

Global structure of the JT-60SA project


https://www.jt60sa.org/wp/

Acknowledgement: Great Leadership in Research Unit

Thank you very much for constructing Research Plan, research activities, and relationship between EU and JA.

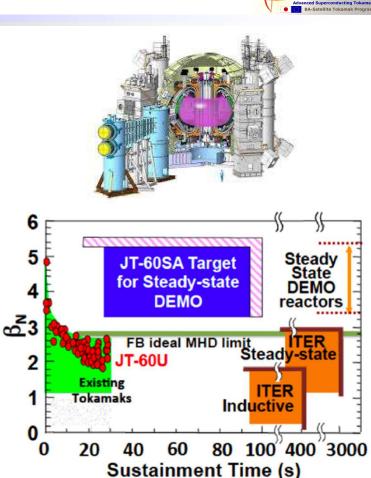
Organizers/keypersons Gerardo Giruzzi, Darren McDonald, Carlo Sozzi, Yutaka Kamada

	Technical Responsible officers
Operation Regime	Takahiro Suzuki,
Development	Emmanuel Joffrin
MHD Stability and	Go Matsunaga,
Control	Tommaso Bolzonella
Transport and	Maiko Yoshida,
Confinement	Michele Romanelli
High Energy Particle	Kouji Shinohara,
Behavior	Philipp Lauber
Pedestal and Edge	Hajime Urano,
Physics	Elena de la Luna
Divertor, SOL and PWI	Tomohide Nakano, Marco Wischmeier
Fusion Engineering	Shinji Sakurai, Christian Day
Theoretical models and simulation codes	Nobuhiko Hayashi, Jeronimo Garcia

Э

Research plan

 JT-60SA research plan is a key pillar to understand our scientific objectives <u>https://www.jt60sa.org/pdfs/JT-</u> <u>60SA Res_Plan.pdf</u>

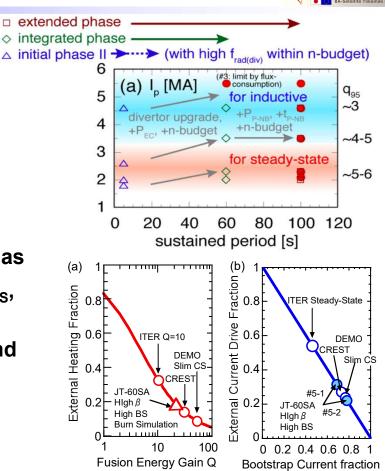

JT-60SA Project for ITER and DEMO

JT-60SA:

- Large superconducting: R_P~3.0 m, a_P~1.2 m
- High plasma current: *I_P/B_T=5.5 MA/2.3 T*
- High power and long pulse: 41 MW × 100 s
- Highly shaped: S=q₉₅I_P/(a_PB_T) ~7, A~2.7, κ_x ~1.9, δ_x ~0.5

Mission:

- Contribute to the early realization of fusion energy by addressing key physics issues for ITER and DEMO
- Aim at fully non-inductive steady-state high β_N operations above the no-wall ideal MHD stability limits, for long time (~3-4 τ_R)


Scenario development

Target plasmas

- ITER standard (q₉₅~3)
- ITER advanced-inductive (q₉₅~4-5)
- DEMO steady-state with 2-3 times of τ_R (q₉₅~5-6)

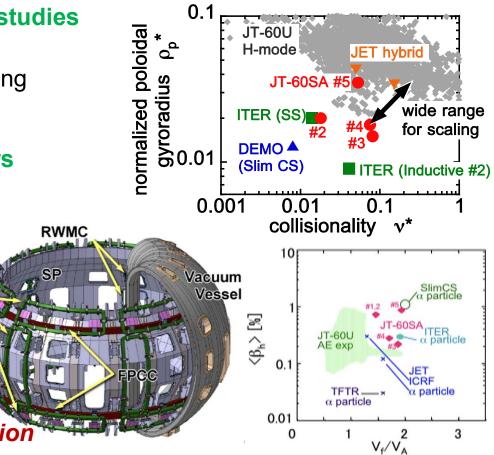
Evaluate DEMO design and ITER regime

- Scenario development for the three target plasmas
- Accessible integrated best performance of $\beta_{\rm N}$, $f_{\rm BS}$, H_{98y2} , $f_{\rm GW,}$...
- Plasma control study in highly self-regulating and burning plasma conditions
 - ⇒ Suggest ITERoperation scenarios and control schemes
 - \Rightarrow Give DEMO concept designs

Physics and Control Studies in ITER, DEMO-relevant regimes

EF@

- Small ρ^* , low v^* , high β , strong e-heating
- ITER and DEMO like shapes


MHD mode control by various actuators

- NTM control by ECCD, kinetic profile
- RWM control by stabilizing plate and coils, EP and rotation effects

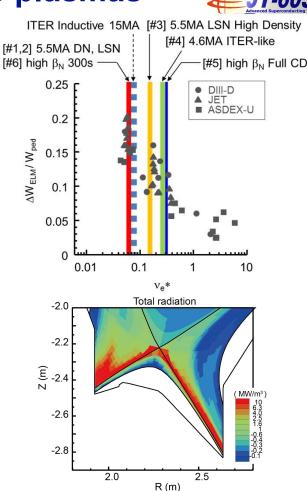
• AE mode and EP mode studies in ITER and DEMO regimes

 Fast ions produced by NNB of 500 keV at I_p=5.5 MA,

Develop models for ITER/DEMO prediction

Risk mitigations at high performance plasmas

- ELM mitigation and suppression
 - at high I_P and low v^* by RMP, pellets, shape
 - QH-mode development at low v^* and low torque

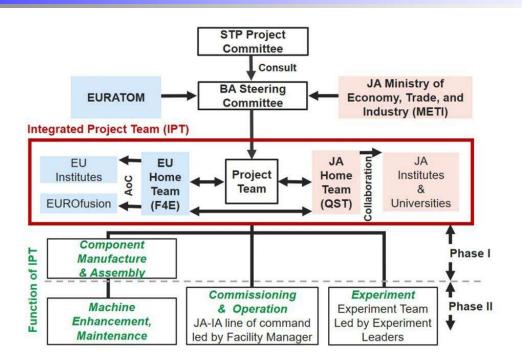

Disruption mitigation and avoidance

- in high $I_{\rm P}$ and $W_{\rm sto}$ plasmas
- Runaway electron study
- Operation below MHD stability limit

Heat and particle handling

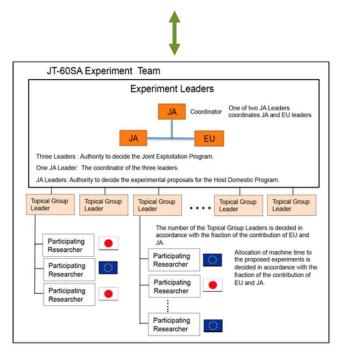
- Radiative divertor with impurity seeding at high power and long pulse
- Detached divertor sustainment in V-shaped divertor (C-wall => W-wall)

Establish risk mitigation schemes in JT-60SA well before ITER


Contents

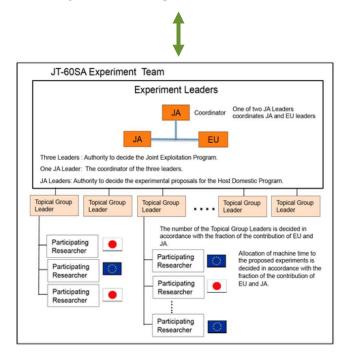
- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions

Global structure of the JT-60SA project


https://www.jt60sa.org/wp/

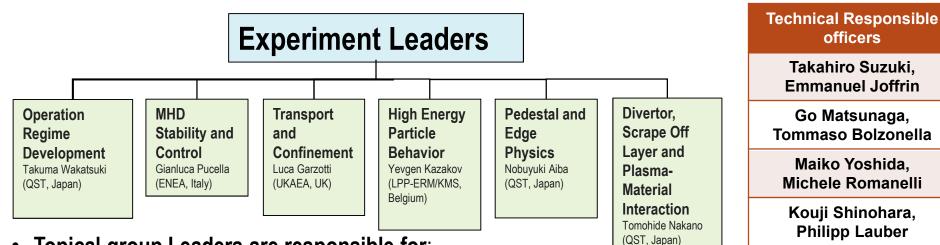
JT-60SA Experiment Team

JT-60SA Project leader and EU and JA Project Managers


https://www.jt60sa.org/wp/

- The JT-60SA Experiment Team is the unified Experiment Implementation Structure for the JT-60SA experiment
- 3 Experiment Leaders
 - Maiko Yoshida
 - Hajime Urano
 - Jeronimo Garcia

JT-60SA Experiment Team: experiment leaders


JT-60SA Project leader and EU and JA Project Managers

- Experiment Team Leaders are responsible for:
- Jointly develop the Annual Experiment Programme and submit it with the Annual Experiment Report to the Project Managers (PMs) and to the Project Leader (PL)
- Jointly assessing, prioritizing, and allocating machine time to experimental proposals
- Jointly direct and supervise the Experiment Team in the implementation of the Annual Experiment Programme
- Jointly coordinate and validate the publications related to the Experimental Team activity.
- Jointly receive, assess and make proposals for machine enhancement from the experiment team
- Jointly contribute to the evaluation of the machine enhancement proposals from the PMs, in view of executing the Experiment Programme.

JT-60SA Experiment Plan Has Been Entrusted

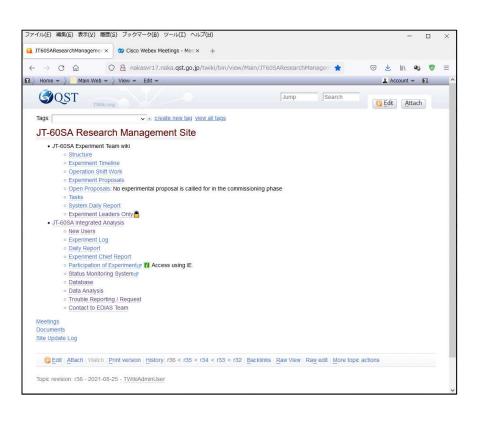
- Topical group Leaders are responsible for: ۲
 - coordinate the scientific discussion of experiment proposals and the execution of the experiments assigned to the Topical Group
 - the Experiment Coordinator is assigned by the Topical Group ٠ Leader of the topic or by the Experiment Leaders when it is across multiple topics
 - the Topical Leader also summarizes the results and reports to the Experiment Leaders.


Hajime Urano, Elena de la Luna

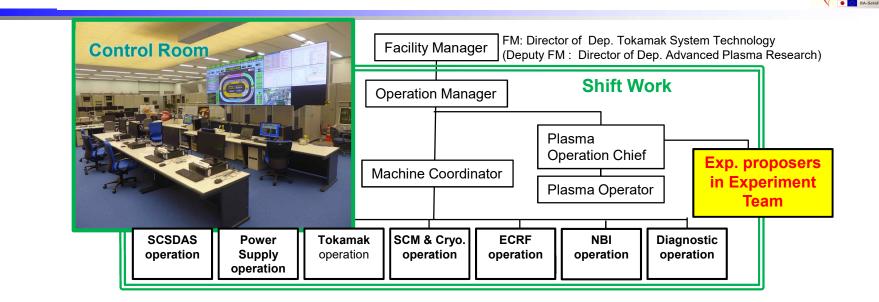
Tomohide Nakano, Marco Wischmeier

> Shinji Sakurai, **Christian Day**

Nobuhiko Hayashi, Jeronimo Garcia


A joint team: First Experiment Team Coordination meeting

LIC


M

First steps: providing tools for management onsite and offsite

- Environment of participation to experiment and data analysis is being developed for as equivalent access as possible between on-premise and remotely
 - HMI: control and monitor for whole JT-60SA operation
 - Data Analysis and DB Access Infrastructure
 - eDAS: basic analysis software
 - Data Access Library: further advanced analysis
 - Remote Access: RCA and RDA
 - JT-60SA RMS: information sharing among participants
 - JT-60SA Pinboard: effective publication management
- Secondary processed data using several experiment data are also acquired to DB.
 Development of data validation system and compatibility to IMAS are being considered.

Control Room Structure

Plasma Operation Chief: Execute plasma operation requested by Exp proposers. Optimize discharge conditions and shot plan in the day considering subsystem status.

Plasma Operator: <u>Program discharge conditions</u> in Human Machine Interface (HMI) according to Plasma Operation Chief.

Experiment proposers: Design the plasma and shot plan and analyze data, request the shot

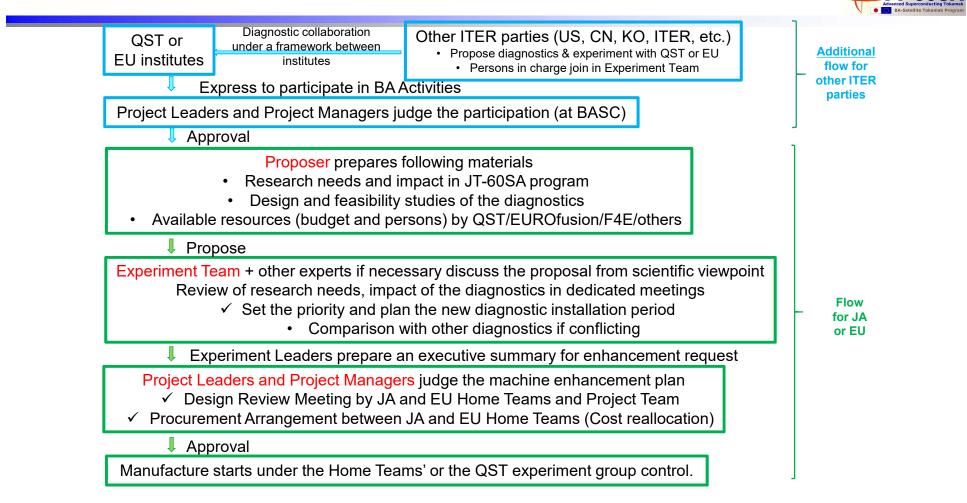
to Plasma Operation Chief / Plasma Operator.

Specific working groups

- Several topics have implications in the Experiment team and operational aspects
- Several working groups are being proposed/discussed:
- Working group: Real time control (creation, development) led by the Operation Regime Development TGL with participants from the integrated commissioning team (including F4E).
- Working group: Disruption avoidance techniques and disruption database led by MHD Stability and Control TGL with participants from the integrated commissioning team (including F4E).
- Working group: Integrated Data Management (Integrated data coherence, data validation chain and software management) under preparation. A meeting will be organized soon.
- Working group: Diagnostics (status, requests) under discussion. (the diagnostics are subsystems handled by QST)

Contents

- **1. Previous structure and mission of JT-60SA**
- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions


Machine Enhancement - Step by Step -

JT-60SA

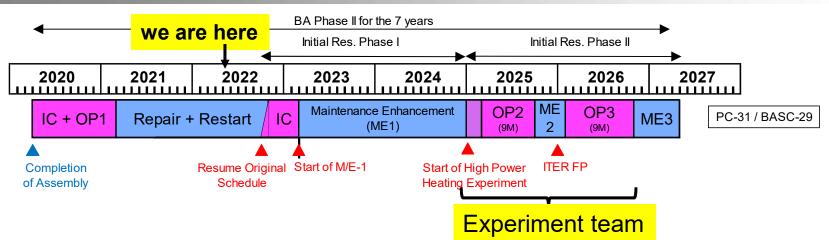
	Phase	Expected operation schedule		Annual Neutron Limit	Remote Handling	Lower Divertor (wall material)	P-NB Perp.	P-NB Tang.	N-NB	NB Energy Limit	ECRF 110 GHz & 138 GHz	Max Power							
	nhaaa l	2020-2023	н	-		-	0	0	0	0	1.5MWx5s	1.5MW	ITER						
Initial	phase I	2025		(N2)			3MW	3MW				19MW							
Research	phase II	2025		0.0540		Carbon Div. Pumping	6.5MW			23MW x 14s	1.5MWx100s +	26.5MW*							
Phase	phasen	2026	D	3.2E19		(Carbon)	0.514144			duty = 1/30	1.5MWx5s	26.51111							
	phase III	2027		(N2)	R&D							33MW*							
Integrated Research	phase I	2029 - 2032	D	4E20 (water)		Actively cooled Carbon Div.Pumping (10MW/m2 ss, 15MW/m2x5s) (Carbon)	13MW	7MW	10MW	20MW x 100s 30MW x 60s	7MW x 100s	37MW	PFPO-1	DEMOs					
Phase	phase II	2033 -	D	1E21 (water)		Actively cooled Tungsten Div.Pumping (Tungsten)				duty = 1/30			PFPO-2						
Extended Research Phase		>5y	D	1.5E21 (Boron)	Use	Actively cooled Tungsten Advanced Structure (U. Div. to be considered) (Tungsten)	16MW	8MW		34MW x 100s		41MW	FPO-1						
		(filler	r in t	the VV doι	,	Upper Open Carbo heat handling capa				*Real Injection: divertor cooling	~ 26MW x 2-3 se	ec limited by		501.27%					

Machine Enhancements decision flow

Machine Enhancements decision flow

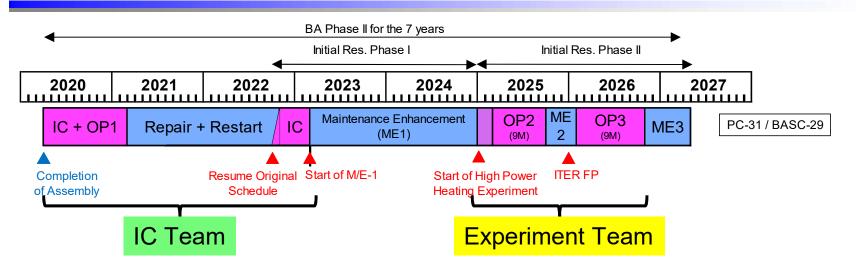
- A prioritization of ME will be done by the EL+TGL before August
- Specific meetings are being organized in order to have a well informed opinion
- Prioritization will be done taking into account the scientific priorities for the initial experimental phase of the machine
- Prioritization will include ME proposed by USA

Contents


- **1. Previous structure and mission of JT-60SA**
- 2. Experiment team organization
- 3. Machine enhancements

4. Timeline for JT-60SA Project and Experiment team

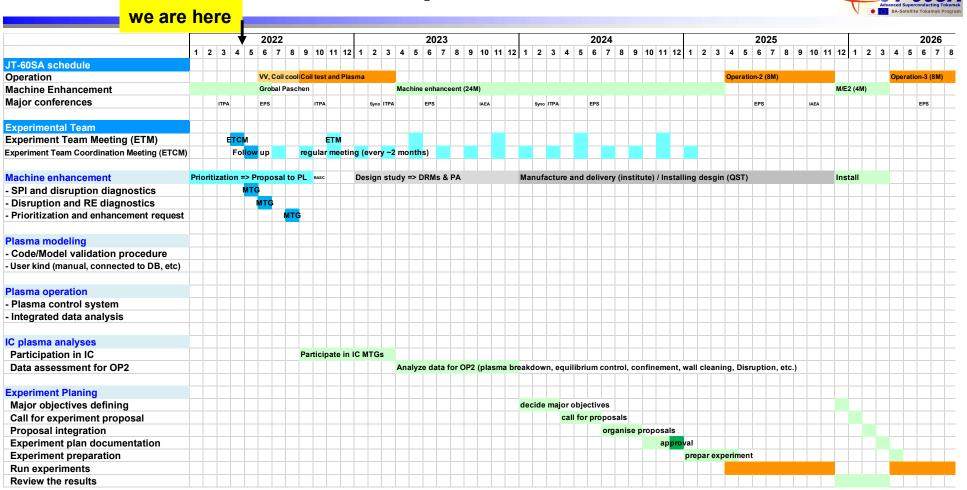
- 5. Role of Experiment Team
- 6. Conclusions



Timeline for JT-60SA Project

- Experiment team scope is the first two physics experiment campaigns (OP2 and OP3)
- To conduct experiments in OP2 and OP3 successfully EL+TGL:
 - ✓ Monitor the Integrated Commissioning and assess the results
 - ✓ Design the experiment plan and prepare the experiments
 - ✓ Consider the positions of OP2 and OP3 in the long-term project, ITER, DEMO
 - ✓ Propose the machine enhancement in ME2

Experiment Team in Integrated Commissioning



• The Integrated Commissioning (IC) is conducted by the IC team.

 $\checkmark\,$ Coil test, wall conditioning test, first plasma and control test

- Experiment Team (now EL+TGLs) will follow the progress of IC in order to start OP2 properly.
 - ✓ Data will be available after the commissioning and the analysis will be coordinated by the ET

Timeline for Experiment Team

Timeline for Experiment Team

we are	he	ere																																	V	•	Advance BA	-Satellit	conducti te Tokam	ng Tokamal Iak Progran
			Ŧ	202	22							20	23								202	24								20	25								202	26
	1 2	2 3	4 5	56	78	9 '	10 1 [.]	1 12	1 2	3	4 !	56	7	89	10	11 1	12 1	2	3	4 5	6	78	39	10	11	12 1	2	3	4	56	7	89	10	11 12	2 1	2	3 4	5	6	78
JT-60SA schedule																																								
Operation				vv , o	Coil co	ol <mark>i Coil t</mark>	test ar	nd Plas	ma																			•	Oper	ation-2	(8M)						0	peratio	on-3 (8	M)
Machine Enhancement				Grob	oal Pas	chen					Machi	ine enh	ancee	ent (24	M)																			M /	E2 (4	M)				
Major conferences		ITPA		EPS		n	ТРА		Sy	no ITPA		EPS			IAEA			Syno	ITPA		EPS									EPS			IAEA						EPS	
Experimental Team																																								
Experiment Team Meeting (ETM)		E	тсм				ET	м																																
Experiment Team Coordination Meeting (ETCM)			Follo	wup		regu	ılar m	neetin	g (eve	ery ~2	mon	ths)																												
Machine enhancement	Prior	tizatio	on =>	Propo	sal to	PL B	BASC		Desig	n stu	idy =>	DRM	s & P	PA			Ma	anufa	acture	and	deliv	ery (i	instit	tute)	/ Ins	tallin	g de	sgin ((QS	Г)				In	stall					-
- SPI and disruption diagnostics			мт	r G																																				
- Disruption and RE diagnostics				MTG																																				
- Prioritization and enhancement request					мт	G																																		
										-											+ +							+ +					+ +					-	+ +	
Plasma modeling	ĹΤ	GI	w	ill c	ora	ani	ze	th	eir	OV	vn	me	eti	inc	IS I	wit	th	me	m	he	rs f	fro	m	W	P.	SΔ	ar	nd (0	ST .	(+1	ıni	ver	sit	ie	s)				
- Code/Model validation procedure	1 I				.9	am			•	•••	•••				, ,												-		-					010		•,				
- User kind (manual, connected to DB, etc)																							-												1					-
Plasma operation					_																		-				-							_	-					
- Plasma control system																																								
- Integrated data analysis																																								
																													-						-					
IC plasma analyses																							-		-				-						+			-		
Participation in IC						Parti	icipat	te in I	СМТ	Gs													-		-				-						+			-		
Data assessment for OP2						- unu	loipu				Anah	vze da	ta fo		2 (nla	ema	brook	dow	n 00	uilibr	iumo	ontro		nfind		nt wa		anin	~ D	ierunt	ion o	te)			-					
Data assessment for OP2		_									Analy	yze ua	114 10			Silla	Diear	uow	n, eq	unibi	ium c	Jonure	JI, CC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	sillei	iii, we		anni	у, D	isiupt	ion, e				-		_			
Experiment Planing												_					_			_			_		-					_		_		_	-					
				_						_		_		_			-				ective		-		-		_		-	_		_		_			_			
Major objectives defining				_						_		_		_			ae	ciae					-		_		_		_			_		_				_		
Call for experiment proposal		_		_	_		_			_		_		_	_		_		C	all to	r prop					_	_		_	_		_		_			_	_		
Proposal integration		_		_						_		_						_		_	•	orgar	nise	propo	_	_			_						_			_		
Experiment plan documentation				_						_		_						_					_		apr	orova									_			_		
Experiment preparation										_													_			р	repar	expe	erim	ent					_		_			
Run experiments										_																														
Review the results																																								

JT-605A

4

Contents

- **1. Previous structure and mission of JT-60SA**
- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions

The role of the Experiment Team

- The Experiment team is formed now by EL+TGL
- Still long way for real experiments,
- Call for experiment proposals is expected to happen after successful IC
- Whole experiment team formation still far
- but many things to do in the meantime for which the experiments team structure can be helpful
 - Reinforce collaborative work
 - Improve joint leadership
 - Exchange of new ideas towards the initial operation phase
 - Drive JA-EU sides towards a common goal
 - Define initial topics for the initial experiment phases
 - Coordinate joint modelling
 - Solve misunderstanding issues
- Interaction with WPSA is essential

Experiment team: Beyond the research plan

- JT-60SA research plan is a key pillar to understand our scientific objectives <u>https://www.jt60sa.org/pdfs/JT-</u> <u>60SA Res Plan.pdf</u>
- But it is not necessarily written in stone:
 - New proposals are welcome
 - Experience from other tokamaks is important but we should go beyond
- Research plan is giving generic scientific objectives, mainly focus on key goals
- Need to define the main scientific topics for the initial campaigns, coherent with
 - Required Machine Enhancements
 - Analysis and simulation codes available

Beyond the research plan: Exploratory ideas

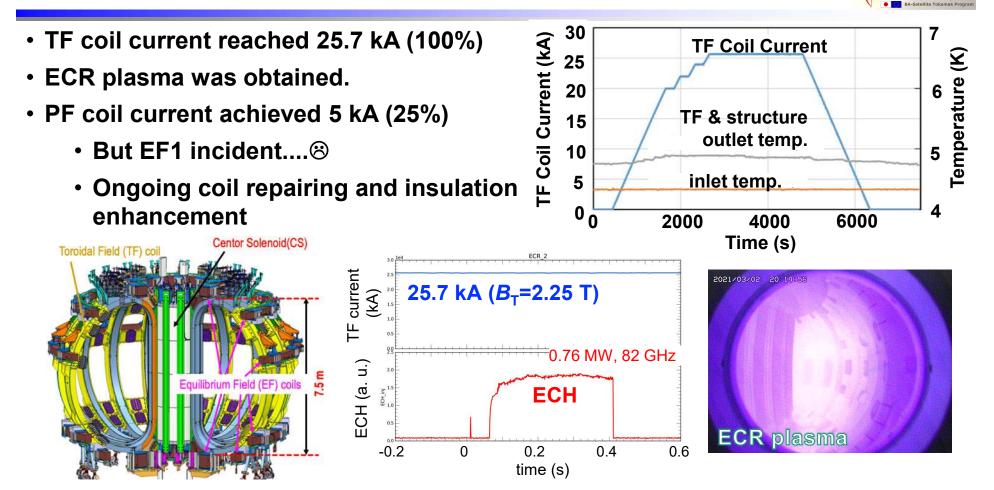
- Is central heating in JT-60SA enough at high density?
- Would more ECRH be required?
- Is ICRH a possibility for JT-60SA? What would be its impact?
- Can experiments be proposed in European tokamaks to address JT-60SA physics?
- Is the strong electron heating a problem for confinement in JT-60SA?
- Is it needed a full assessment of transport & confinement in L-mode plasmas?

32

Contents

- **1. Previous structure and mission of JT-60SA**
- 2. Experiment team organization
- 3. Machine enhancements
- 4. Timeline for JT-60SA Project and Experiment team
- 5. Role of Experiment Team
- 6. Conclusions

Conclusions


- The experiment team structure has been stablished in 2022.
- EL+TGL are already appointed
- The call for participation will be launched once the IC is successfully done
- In the meantime the ET will be useful for:
 - Discussing and deciding ME
 - Coordinate and favour joint activities
 - Propose new ideas
 - Improve link with the operator
- Focus on the preparation for initial phases of the machine in coordination with the ME requirements and models available
- A first step is to map current scientific activities within WPSA and QST to the TG in order to favour joint discussions by calling for joint meetings

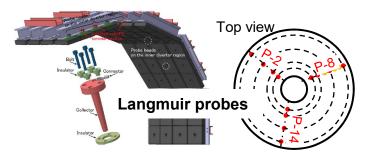
Back-up

Status of Integrated Commissioning

Diagnostics at Integrated Commissioning

List of diagnostics

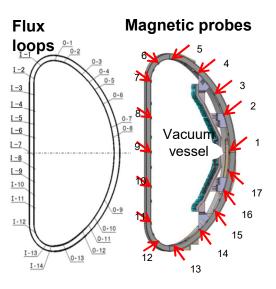
Diagnostics	Section	Port/Location
CO ₂ Laser interferometer (tangential), Visible spectroscopy (tangential)	P1 and P8	Horizontal
Soft X-ray detector arrays	P14	Horizontal
Visible TV cameras (+ two light guide)	P15	Horizontal
EDICAM	P18	Horizontal
Langmuir probes	P2, P8 and P14	upper divertor


EDICAM

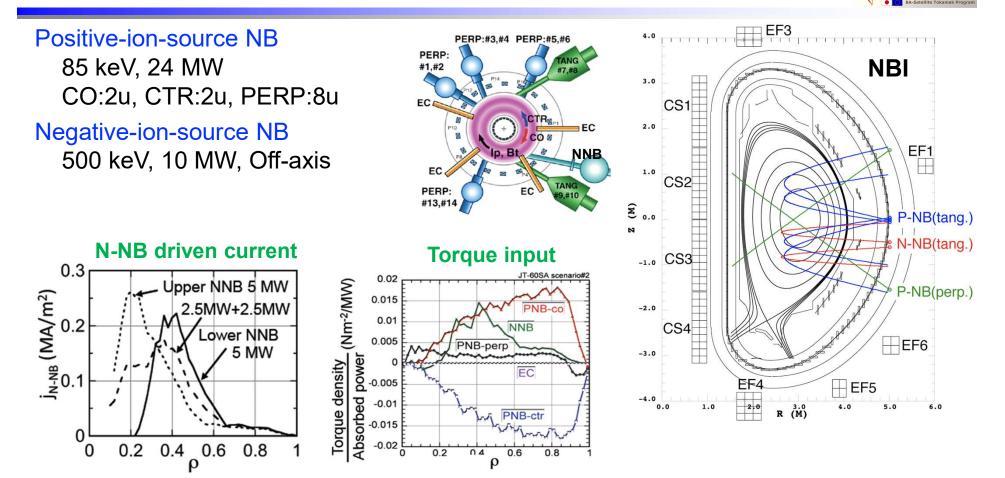
FOV~80


Visible camera

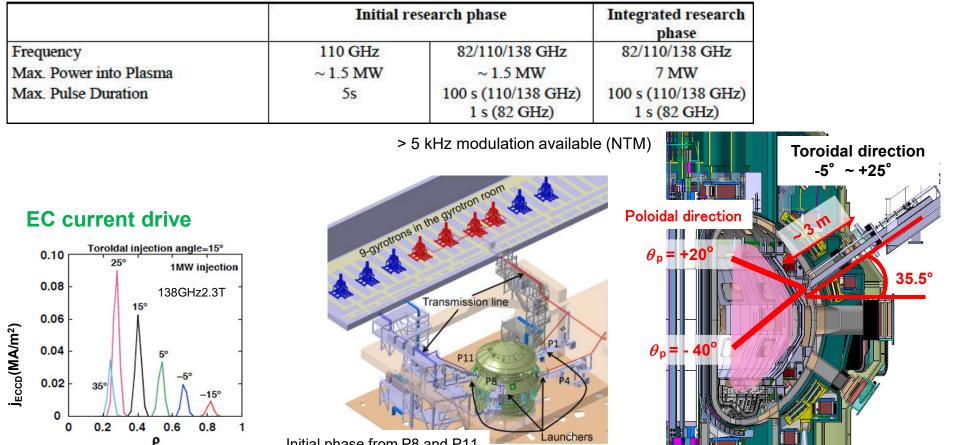
Co-direction viewing Ctr-direction viewing



CO2, Visible spectrometer


Magnetic sensors

- Rogowski coil: 2
- Diamagnetic loop: 1
- Flux loops: 27
- Magnetic probes: 17
- AT probe: 8

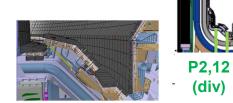


Neutral Beam Injection

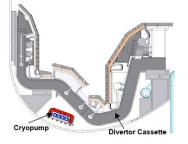
Electron Cyclotron Range of Frequency

Initial phase from P8 and P11

Fueling and Pumping


See plasma control session

tomorrow.


- Gas puff
 - ✓ 10 Injection lines, 31 Pam³/s for each (D)
 - ✓ H, D, Impurities (He, N₂, Ne, Ar, Kr, Xe, CD₄, etc.)
- Pellet Launching System
- Massive Gas Injection

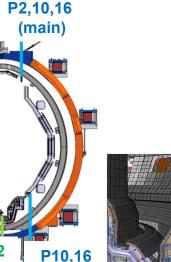
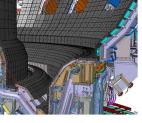

System	JT-60U	simulation JT-60SA	SONIC S	Simulation
46	(D/s)	(D/s)	Scenario #2	Scenario #5-1
Gas puff	1.8 x10 ²³ (300 Pa m ³ /s)	1.8 x10 ²³ (300 Pa m ³ /s) Future upgrade: + 0.5x10 ²³ (90 Pa m ³ s)	1.5 x10 ²²	2.5 x10 ²¹
pellet	1.0×10^{22}	3.0 x10 ²² (3 sources)		
NB	$2.0 \text{ x} 10^{21}$	$2.0 \text{ x} 10^{21}$	2 (1021	2 (1021
N-NB	5.0 x10 ²⁰	5.0 x10 ²⁰	2.6×10^{21}	2.6×10^{21}
Gas jet	Used	No request		
Divertor pumping	28 m ³ /s (effective)	0-100 m ³ /s	1.6 x10 ²² at 50 m ³ /s	4.4 x10 ²¹ at 30 m ³ /s

Table B-2 Specifications of particle fueling and pumping systems and results of SONIC



- Pumping with cryopump
- ✓ 10 steps pumping speed between 0-100 m³/s
- ✓ Compatible to MGI

(main)

In-Vessel Coils and Stabilization Plates

Name	Purpose	Specification	Figure
FPPC Fast Plasma Position control Coil	fast position (vertical & horizontal) control	Number: 2 (Upper & Lower) Max current: 120 kAT Location: Behind SPs	\bigcirc
EFCC Error Field Correction Coil	error fields (n≠ 0) correction and resonant magnetic field perturbation	Number: 18 (Tor 6 x Pol 3) Max current: 45 kAT Location: Behind SPs	B
RWMC Resistive Wall Mode control Coil	RWM feedback control	Number: 18 (Tor 6 x Pol 3) Max current: 2.2 kAT Location: In front of SPs	
SP Stabilizing Plate	passive stabilization of VDE and RWM	Wall time constant: ~40ms	

See control session tomorrow.

Diagnostics

- Integrated Commissioning
 - Machine protection
 - Visible camera, EDICAM
 - Plasma profiles
 - Soft X-ray
 - > Impurities
 - Visible sepc.,
 - Radiation and others
 - CO2 laser (*nl*), Upper divertor probes, Neutral pressure, magnetic sensors

- Initial Research Phase-I/II
 - Machine protection, Licensing
 - Visible/IRTV camera, EDICAM, Neutron monitor
 - Plasma profiles
 - YAG Thomson (T_e, n_e), ECE (T_e), CXRS (T_i, V_{ϕ}, V_{θ}, n_c), MSE (j_r), XICS (T_e, T_i, V_{ϕ})
 - > Impurities
 - Visible sepc.(Zeff), VUV spec., D_a/H_a, TESPEL
 - Radiation and others
 - Bolometer, CO2 laser (*nl*), Soft X-ray, Divertor probes, Neutral pressure, magnetic sensors,
 - High energetic particle measurements
 - FIDA, (FIELD for OP3)

