

Effects of impurity seeding on divertor detachment Up-down asymmetry of divertor particle and heat loads

S. Masuzaki, B.J. Peterson, K. Mukai, G. Kawamura, M. Kobayashi, Y. Hayashi, T. Sugiyama

- To investigate the effects of impurity gas seeding on radiation enhancement and reduction of electron temperature.
 - \checkmark Nitrogen, neon, argon, and xenon are considered.
 - ✓ Differences in radiation zone for each impurity will be measured by using the imaging bolometer and spectroscopy.
 - ✓ Toroidal asymmetry of divertor plasma behavior will be measured by using Langmuir probes embedded in divertor tiles and thermography.

Comparison of measured and simulated radiation profiles during Ne seeding in LHD

Toroidally asymmetric divertor plasma behaviors have been observed in LHD.

Isat, detach / Isat, attach

H. Tanaka et al., Nucl. Mater. Energy 12 (2017) 241.

- To systematically investigate the up-down asymmetry of heat and particle loads on divertor tiles.
 - ✓ Density and heating power will be scanned, respectively.
 - ✓ Discharges under high and low magnetic field strength, and forward and reversed fields will be conducted.
 - \checkmark The up-down asymmetry in detached plasma is also investigated.
 - \checkmark Comparison of H and He discharges is interesting.

Observed up-down asymmetries of plasma parameters in W7-X

K. Hammond et al, Plasma Phys. Control. Fusion 61 (2019) 125001.

Measurement of divertor plasma asymmetry in LHD

In this study, total ion saturation current to the Langmuir probe arrays are presented as $\Sigma I_{sat} L$, and $\Sigma I_{sat} R$, respectively.

The analyzed data were obtained during NBI heated plasmas.

Observed asymmetry in particle load on divertor tiles in LHD

S. Masuzaki et al, Nucl. Mater. Energy 18 (2019) 281.

- Density: 1E19 10E19 /m3
- ➤ Heating power: 2 6 MW
 - \checkmark Comparison btw NBI and ECH is interesting
- Magnetic configuration: low-iota, standard
- Magnetic field strength: low and high
- > Magnetic direction: forward and reversed