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Previous multi-mode model

shear Alfvén continuum
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CKA (ideal MHD) provides the modes / EUTERPE
calculates the fast-particle power transfer

here: single CKA simulation with phase factor
ei[m0ϑ+n0φ] (m0 = 11, n0 = −6) (identical for all
modes)

does not represent the typical stellarator case well

usually modes from different CKA runs, with
different phase factors, need to be combined

radial mode structures
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The new multi-mode model I (CKA example)
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The new multi-mode model II

Old multi-mode model New multi-mode model

all modes come from a single CKA
calculation

several CKA calculations can be
combined

all modes have the same phase factor modes with any phase factor can be
combined

phase factor in EUTERPE set by CKA
phase factor is no longer extracted in
EUTERPE (always full potential)

this change is in principle trivial, but phase-factor extraction goes very deep in
EUTERPE

numerous places needed to be changed (was quite a bit of work)

new version has been benchmarked and is ready for use now

currently being employed for some experimental cases / no results to show yet
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Sketch of the updated derivation with finite E∥

CKA-EUTERPE is based on the gyrokinetic density equation

∂
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as well as Ampère’s law

−∇2
⊥A∥ = µ0j

(1)
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and Ohm’s law

−
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en0,e
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We make a complex mode ansatz for ϕ and A∥

ϕ (r, t) =
1

2

∑
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[
ϕ̂j (t)ϕ0,j (r) exp (iωjt) + ϕ̂∗
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Sketch of the updated derivation with finite E∥

Insert ansatz into Ohm’s law and multiply resulting equation with

−∇2
⊥

[
Â∗
kA

∗
0,k (r) exp (−iωkt)

]
(6)

and drop all terms proportional to exp [−i (ωj + ωk) t] (fast oscillations). This yields
the first amplitude equation
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Sketch of the updated derivation with finite E∥

For the second equation we insert the ansatz into the time derivative of the
gyrokinetic density equation, perform a multiplication with

ϕ̂∗
kϕ

∗
0,k (r) exp (−iωkt) (10)

and again neglect terms proportional to exp [−i (ωj + ωk) t]. This yields the second
amplitude equation
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Results for the ITPA benchmark case

Case description

standard ITPA case, but with twice the fast-ion density to reach nonlinear
saturation earlier
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m = 10, 11/n = −6 TAE mode in the gap of the continuum as usual
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Results for the ITPA benchmark case

no E∥

f = 63.5 kHz γ = 3.673 · 104 s−1

with E∥

f = 62.1 kHz γ = 2.461 · 104 s−1

linear frequency unchanged when finite E∥ is included

linear growth rate reduced by about 1/4 (trend is expected)

nonlinear saturation reached later in the simulation

saturation level comparable (overshoot smaller)

nonlinear frequency chirping only affected marginally
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Caveat: equations of motion in EUTERPE

CKA-EUTERPE uses the v∥-formulation of the equations

v̇∥ = − µ∇B ·
[
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∑
j

A0,j exp (iωjt)
∑
k

N̂−1
jk ukÂj (15)

numerical instability develops instantly

cannot be mitigated by using smaller
time step or larger electron mass

reason is unclear at the moment
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Short summary and next steps

CKA-EUTERPE model is still extended with new features
more general multi-mode version

new physics like finite E∥

apply the new model to W7-X cases (suitable cases have to be identified)

goal: can become the basis of a transport model that also works in stellarator
geometry, but must be properly benchmarked

a benchmark with the LIGKA-HAGIS model would be interesting
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The SCENIC code package

SCENIC1 is now run in Greifswald to model ICRH physics

iterative procedure of three (coupled) codes

usually 5− 10 iterations necessary to find consistent solution
ANIMEC (anisotropic equilibrium)

LEMan (full-wave code / plasma enters with its dielectric tensor)

VENUS-LEVIS (particle following in the ICRH wave field / Monte-Carlo kicks)

adapted from M. Machielsen

1M. Jucker et al., Comm. Phys. Commun. 183, 912-925 (2011)
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LEMan

LEMan = full wave code that solves Maxwell’s equations in potential form

∇2A+ k20 ϵ̂ ·A+ ik0ϵ̂ · ∇ϕ = −
4π

c
jant (16)

∇ · (ϵ̂ · ∇ϕ)− ik0∇ · (ϵ̂ ·A) = −4πρant (17)

using Coulomb gauge ∇ ·A = 0 k0 = ω/c

plasma is included via its dielectric tensor ϵ̂ (different approximations possible:
cold / warm / hot plasma)

code uses finite elements in radial direction and a Fourier expansion in the
angular directions

typically, many poloidal and toroidal
modes need to be included to ensure
convergence

no couplings outside a given mode
family → separate simulation can be
done for each of the 5 mode families
and total wave field reconstructed
from this data (saves computing
resources)
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VENUS-LEVIS

VENUS-LEVIS solves guiding-centre drift-kinetic equations

Ẋ = v∥
B⋆
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+
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quasi-linear operator applies ICRH kicks to the particles (collisions also included)
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Equations taken from H. Patten’s PhD thesis
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Example of simulations performed on MARCONI

simulations with high Fourier resolution m ∈ [−15, 15], n ∈ [−150, 149] have
been performed

split into 5 separate simulations (for the 5 mode families of W7-X → 5 · 1860
modes)

high resolution needed to resolve small structures → realistic results
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Profiles, Cases, and Aims

Aims:

provide theoretical support for ICRH operation

first plasmas with ICRH will be He-plasmas with H-minority

verify that power is indeed absorbed by H-minority (fundamental resonance)

similar profiles available for 10% and 15% Hydrogen concentration and for higher
Helium (bulk plasma) densities

radial electric field comes from NEOTRANSP
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Power absorption depends on H minority concentration
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3 iterations of SCENIC package performed for each minority concentration

H power absorption in the range of ≈ 92% for the cases with 5 and 10% H
minority (converged)

H power absorption drops to ≈ 85% for 15% H minority (not converged yet)

this can hopefully be compared to experimental data in the future
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Absorbed power affects formation of FI distribution function
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H minority absorbs least amount of power at 15% concentration

⇒ fewer fast ions

(standard minority heating scheme is not beneficial for fast-ion generation
anyway)
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Comparison of the ICRH wave field (|E+|)

overall shape of the wave field looks similar

resonance only in the bean-shaped cross section and absent in triangular cross
section

depends on equilibrium (mirror ratio)
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Comparison of the radial power deposition profiles

as seen in previous results: no big difference between the two 5% and 10% cases

much broader power deposition profile for 15% H minority

large spike at ρ = 0 is artificial

throughout these simulations it is assumed that 1 MW of power is coupled to the
plasma
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Next steps

data from particles lost in the
VENUS-LEVIS simulation

data for particle energy also available

vary the bulk-plasma density: two
more cases with n = 1.0 · 1020 m−3

and n = 1.5 · 1020 m−3 are running
at the moment

use lost-particle data for particle
following in the SOL (ASCOT) to see
where they hit the 3D wall / antenna

find hot spots / compare to NBI /
assess machine safety aspects
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Interface to EUTERPE

fast-ion distribution function computed by SCENIC is fitted to a modified
bi-Maxwellian (analytical)

f0 = N
(

m

2πT⊥

)3/2

exp

[
−m

(
µBc

T⊥
+

|E − µBc|
T∥

)]
(26)

in practise, SCENIC provides radial profiles for N , T⊥, T∥

this distribution function is implemented in EUTERPE

has been benchmarked successfully against the
standard Maxwellian in the isotropic limit

⇒ stability analysis possible

so far, the standard minority heating scheme
(what was shown today) and the 3-ion scheme
do not provide enough fast ions to affect the
stability of AEs

combined NBI/ICRH schemes will be
investigated in the future
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Summary and conclusions

CKA-EUTERPE:

more general multi-mode version implemented (allows arbitrary phase factor for
each mode)

finite parallel electric field included

SCENIC:

SCENIC code used to model ICRH physics in W7-X → preparation for upcoming
campaign

regular minority-heating scheme tried at different minority concentrations

fast-particle losses to the wall/antenna will be assessed next

distribution functions computed from SCENIC can be used in EUTERPE
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Back-up slides
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