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Previous multi-mode model

shear Alfvén continuum

2510 . o CKA (ideal MHD) provides the modes / EUTERPE
calculates the fast-particle power transfer

o here: single CKA simulation with phase factor
ellmod+n0¢] (mg = 11, n9 = —6) (identical for all
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,./\/\/ o does not represent the typical stellarator case well
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o usually modes from different CKA runs, with
different phase factors, need to be combined
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The new multi-mode model | (CKA example)
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The new multi-mode model Il

Old multi-mode model

o all modes come from a single CKA
calculation

o all modes have the same phase factor

@ phase factor in EUTERPE set by CKA

C. Slaby et al.

New multi-mode model

o several CKA calculations can be
combined

@ modes with any phase factor can be
combined

@ phase factor is no longer extracted in
EUTERPE (always full potential)
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The new multi-mode model Il

Old multi-mode model New multi-mode model
o all modes come from a single CKA o several CKA calculations can be
calculation combined
o all modes have the same phase factor ° mode§ with any phase factor can be
combined
o phase factor in EUTERPE set by CKA @ phase factor is no longer extracted in

EUTERPE (always full potential)

o this change is in principle trivial, but phase-factor extraction goes very deep in
EUTERPE

@ numerous places needed to be changed (was quite a bit of work)
@ new version has been benchmarked and is ready for use now

o currently being employed for some experimental cases / no results to show yet
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Sketch of the updated derivation with finite £ W

CKA-EUTERPE is based on the gyrokinetic density equation

9 o [mini (D, 4 40 [PxK bx V4
QV. |: Vj_d)] {]H b+j H B A” — B +
unbxk 1bxVB
M e = 1)
1) bXxk 1 bxVB
+p|\ fast B +pJ_,fast B2
as well as Ampere's law
—ViA = Hojﬁ ), (2)
and Ohm'’s law 5 bV
_ %A -b- Vo= —— (1 3
e I ) eTLO,epH’e ( )

We make a complex mode ansatz for ¢ and A
6(rt) = Z [0 (1) do.5 () exp (iwst) + &5 (1) 65,5 (D) exp (—iwgt)]  (4)

Ay (rt) = Z[A (£) Ao 5 (r) exp (iw;t) + AF (1) Af ; (1) exp (—iw;t)]  (5)
J
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Sketch of the updated derivation with finite £ W

Insert ansatz into Ohm'’s law and multiply resulting equation with
—v3 [5G, () exp (—icont)| ©)

and drop all terms proportional to exp [—i (w; + wy) t] (fast oscillations). This yields
the first amplitude equation

a . " N . "
aAJ’ + w; (Aj — (f)j) = ZNjklukAj' (7)
k
where
Njp = AjA% exp i (wj — wy,) 1] /d?’rVJ_Ao,j "V LAS (8)
and
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Sketch of the updated derivation with finite £

For the second equation we insert the ansatz into the time derivative of the
gyrokinetic density equation, perform a multiplication with

D61, (r) exp (—iwit) (10)

and again neglect terms proportional to exp [—i (w; + wy) t]. This yields the second
amplitude equation

8- . . o
5% v <¢’j - Aj) = _;Mjlekqu (11)

where 0
N PPN . ming *
M, = §¢j¢;; exp [i (w; — wg) ] /d%?vmo,j VLG g (12)

and
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Results for the ITPA benchmark case

Case description

o standard ITPA case, but with twice the fast-ion density to reach nonlinear
saturation earlier

n 100 T T T
lel9 lel7 P
2101 ions — fast [ 30 m=11
elec &0 i
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60 ]
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s o . . . ;
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s
e m =10,11/n = —6 TAE mode in the gap of the continuum as usual
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Results for the ITPA benchmark case

no E with E
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o linear frequency unchanged when finite E)| is included

linear growth rate reduced by about 1/4 (trend is expected)

nonlinear saturation reached later in the simulation

saturation level comparable (overshoot smaller)

nonlinear frequency chirping only affected marginally
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Caveat: equations of motion in EUTERPE

CKA-EUTERPE uses the v)-formulation of the equations

. ms v gs 9(A))
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@ numerical instability develops instantly

e @ cannot be mitigated by using smaller
time step or larger electron mass

log(int(|Q))
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reason is unclear at the moment
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Short summary and next steps

CKA-EUTERPE model is still extended with new features

o more general multi-mode version

o new physics like finite E)

apply the new model to W7-X cases (suitable cases have to be identified)

@ goal: can become the basis of a transport model that also works in stellarator
geometry, but must be properly benchmarked

@ a benchmark with the LIGKA-HAGIS model would be interesting

C. Slaby et al. CKA-EUTERPE and SCENIC for W7-X 13 /26



Contents

© SCENIC for modelling ICRH physics

C. Slaby et al. CKA-EUTERPE and SCENIC for W7-X 14 /26



The SCENIC code package

@ SCENIC! is now run in Greifswald to model ICRH physics
o iterative procedure of three (coupled) codes

o usually 5 — 10 iterations necessary to find consistent solution
o ANIMEC (anisotropic equilibrium)

o LEMan (full-wave code / plasma enters with its dielectric tensor)

o VENUS-LEVIS (particle following in the ICRH wave field / Monte-Carlo kicks)

ICRH wave fast particle effects:
fast particle effects: field updated dielectric
current / anisotropic tensor

i VENUS-LEVIS

adapted from M. Machielsen

M. Jucker et al., Comm. Phys. Commun. 183, 912-925 (2011)
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LEMan

o LEMan = full wave code that solves Maxwell's equations in potential form

4
V2A + k2 A +ikoé- Vo = — - jant (16)
c
V- (€-V¢) —ikoV - (€- A) = —4dmpant (17)
using Coulomb gauge V- A =0 ko =w/c

@ plasma is included via its dielectric tensor é (different approximations possible:
cold / warm / hot plasma)

@ code uses finite elements in radial direction and a Fourier expansion in the
angular directions

<Ix1> le-13

! o typically, many poloidal and toroidal
100 modes need to be included to ensure
: convergence
' @ no couplings outside a given mode
’ family — separate simulation can be
. done for each of the 5 mode families
: and total wave field reconstructed
-100 from this data (saves computing
' resources)
-150
-15 -10 -5 ] 5 10 15

toroidal mode n

poloidal mode m
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VENUS-LEVIS

VENUS-LEVIS solves guiding-centre drift-kinetic equations

. B* E*xb
X = x (18)
) q B* . E*
V= (19)
m Bj
with
I .
E*=E— (g—l-l)”p”) VB—pHB (20)
B*=B+pVxB (21)
” =b-B* (22)

quasi-linear operator applies ICRH kicks to the particles (collisions also included)

02
AUL:%+R1/2<AU2L> (23)

, k ‘ k 2
Ete ¥, (l—”> +E et g, (57”)‘ (24)

Z2
A 2N _ 2, o
(Avi) =r L o A

my

l\')

Ay = H vLAvl (25)
Equations taken from H. Patten’s PhD thesis
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Example of simulations performed on MARCONI

o simulations with high Fourier resolution m € [—15,15], n € [—150, 149] have
been performed

@ split into 5 separate simulations (for the 5 mode families of W7-X — 5 - 1860
modes)

5% H minority

<Ix1> le-13
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poloidal mode m

toroidal mode n

@ high resolution needed to resolve small structures — realistic results
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Profiles, Cases, and Aims

Aims:
o provide theoretical support for ICRH operation
o first plasmas with ICRH will be He-plasmas with H-minority

o verify that power is indeed absorbed by H-minority (fundamental resonance)
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@ similar profiles available for 10% and 15% Hydrogen concentration and for higher
Helium (bulk plasma) densities

o radial electric field comes from NEOTRANSP
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Power absorption depends on H minority concentration

H power fraction / %

C. Slaby et al.
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80 || 10% H minority / ng.g = 5.01013 m3 —e— 80
15% H minority /ng'g = 501010 m'3
5% H minority /n; = 1.01020 m3 —e—
5% H minority / ngp = 1.510%° m® —e—
75 - 75 - -
1 2 3 4 0 5 10 15 20
iteration H minority concentration / %

3 iterations of SCENIC package performed for each minority concentration

H power absorption in the range of =~ 92% for the cases with 5 and 10% H
minority (converged)

H power absorption drops to & 85% for 15% H minority (not converged yet)

this can hopefully be compared to experimental data in the future
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Absorbed power affects formation

of FIl distribution function

f/ arb. units
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o H minority absorbs least amount of power at 15% concentration

= fewer fast ions

o (standard minority heating scheme is not beneficial for fast-ion generation

C. Slaby et al.

anyway)
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Comparison of the ICRH wave field (|E. |)

5% H minority

modEplus

0.0e+00

@ overall shape of the wave field looks similar

@ resonance only in the bean-shaped cross section and absent in triangular cross

section
@ depends on equilibrium (mirror ratio)
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Comparison of the ICRH wave field (|E. |)

10% H minority

modEplus

0.1

0.0e+00

@ overall shape of the wave field looks similar

@ resonance only in the bean-shaped cross section and absent in triangular cross
section

o depends on equilibrium (mirror ratio)
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Comparison of the ICRH wave field (|E. |)

15% H minority

04

03

02

modEplus

I 0.1
0.0e+00

@ overall shape of the wave field looks similar

@ resonance only in the bean-shaped cross section and absent in triangular cross
section

@ depends on equilibrium (mirror ratio)
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Comparison of the radial power deposition profiles

Prot

0.20

0.15

0.10 4

0.05

Absorbed power density/Input power (m~-3)

0.00 -
0.0 0.2 0.4 0.6 0.8 1.0
P =y VeorMWor, edge
@ as seen in previous results: no big difference between the two 5% and 10% cases
@ much broader power deposition profile for 15% H minority

o large spike at p = 0 is artificial

o throughout these simulations it is assumed that 1 MW of power is coupled to the
plasma
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Comparison of the radial power deposition profiles

— Prot
0.40 4 Pe

— He-4
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Absorbed power density/Input power (m”-3)
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@ as seen in previous results: no big difference between the two 5% and 10% cases
@ much broader power deposition profile for 15% H minority
o large spike at p = 0 is artificial

o throughout these simulations it is assumed that 1 MW of power is coupled to the
plasma
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Comparison of the radial power deposition profiles

~ 0.7 — Ptot

m == P

<

E — He-4

: 0.6 "

§_ —H

2054

5

a

£

> 0.4

‘&

=

7]

T o034

o

=

2

5 0.2+

[

a

2

5

§ 0.1

m

0.0 T T Fomo=s ;

0=\ Weorlior,sage
@ as seen in previous results: no big difference between the two 5% and 10% cases
@ much broader power deposition profile for 15% H minority
o large spike at p = 0 is artificial

o throughout these simulations it is assumed that 1 MW of power is coupled to the
plasma
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Next steps

1e15
6

-l
- >40 keV

Particles per bin
w I

~

9{.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
A=vim
o data from particles lost in the
VENUS-LEVIS simulation

o data for particle energy also available

o vary the bulk-plasma density: two
more cases with n = 1.0 - 1020 m—
and n = 1.5-1020 m~—3 are running
at the moment

3
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toroidal angle

o

“

I

w

Angular positions on LCFS

\

Boozer angle
geometric angle

3 4 5 6
poloidal Boozer angle

@ use lost-particle data for particle

following in the SOL (ASCOT) to see
where they hit the 3D wall / antenna

o find hot spots / compare to NBI /

assess machine safety aspects
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Interface to EUTERPE

o fast-ion distribution function computed by SCENIC is fitted to a modified
bi-Maxwellian (analytical)

3/2
_ m _ uBe |E — puBe|
= (i) oo oo (2 E5)

o in practise, SCENIC provides radial profiles for N/, T, T

(26)

@ this distribution function is implemented in EUTERPE

@ has been benchmarked successfully against the
standard Maxwellian in the isotropic limit

= stability analysis possible

@ so far, the standard minority heating scheme S0
(what was shown today) and the 3-ion scheme
do not provide enough fast ions to affect the
stability of AEs

o combined NBI/ICRH schemes will be 5 A
investigated in the future 40 30 20 -10 10 20 30 40

/v
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Summary and conclusions

CKA-EUTERPE:

@ more general multi-mode version implemented (allows arbitrary phase factor for
each mode)

o finite parallel electric field included

SCENIC:

@ SCENIC code used to model ICRH physics in W7-X — preparation for upcoming
campaign

@ regular minority-heating scheme tried at different minority concentrations
o fast-particle losses to the wall/antenna will be assessed next

o distribution functions computed from SCENIC can be used in EUTERPE
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