

TSVV4 Update and Future plans

D. Told Thrust 1 Meeting #02 — June 21, 2022

This work has been somied out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under gran agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

Key deliverables / Project structure

Report on 2021 activities

Details on selected work

Adding neutrals + collaborations

Setup of TSVV Task 4

Aim: GK codes for Edge + SOL

TSVV T4 Project Members

Bottino	Alberto	MPG
Brunner	Stephan	EPFL-SPC
Chôné	Laurent	Aalto Univ.
Costea	Stefan	JSI
Dif-Pradalier	Guilhem	CEA
Frei	Baptiste	EPFL-SPC
Geraldini	Alessandro	EPFL-SPC
Grandgirard	Virginie	CEA
Hoffmann	Antoine	EPFL-SPC
Kormann	Katharina	MPG
Michels	Dominik	MPG
Murugappan	Moahan	EPFL-SPC
Mustonen	Aleksandr	MPG
Sarazin	Yanick	CEA
Told	Daniel	MPG
Ulbl	Philipp	MPG

2021:

- Switched K. Kormann for Dongjian Liu
- L. Chôné moved to Helsinki U
- Master student at SPC: Sam Zeegers
- PhD student at CEA: Yann Munschy
- New PhD students working on GENE-X: J. Trilaksono, Marion Smedberg

2022:

- **D. Michels** left (replaced by Marion)
- New PhD student for PICLS code: Annika Stier

GENE-X

- M111 Implementation of sheath boundary conditions for simple geometries.
- M113 Implementation of sheath boundary conditions for arbitrary geometries.
- M112 Implementation of collisions in stages, aiming for realistic Landautype operators
- **M115 (2023)** Implementation of electromagnetic effects

GyselaX

• M121 First simulation with particle source

PICLS

- M131 Full-F nonlinear collision operator
- **M132** Second order particle Lagrangian (nonlinear polarization equation)

Ab-initio sheath studies

M211 Providing sheath parameters and corresponding BCs by extracting them from the existing BIT1 simulation database

Immersed boundary sheath studies

M221 Identify critical parameters for sheath boundary conditions with kinetic electrons in VOICE

Analytical sheath studies for gyrokinetic systems

M231 Extension of sheath model by kinetic electron physics
M234 (2024) Generalization to arbitrary angles

Exploring the limits of Gyrokinetics

- Enable routine operation of ssV in 3D position space
- Introduce electromagnetic fluctuations to ssV
- Perform ITG simulations with varying gradients benchmark against pure gyrokinetics (ssV)

Coupling to neutral and impurity physics

Develop source term formulation for neutral particle coupling to gyrokinetic equations

Exploring the gyrokinetic moment hierarchy

Explore importance of kinetic effects for linear modes in tokamak boundary for different number of moments, benchmark with main codes and different collision operators (including a full linear Coulomb collision operator)

Further activities

Dissemination (as of AR 2021):

• 3 papers, 1 invited talk, 1 poster presentation

ACH:

- **GyselaX** project underway at EPFL hub
- **GENE-X** project concluded at IPP hub

Meetings:

- Monthly member meetings
- Dedicated **sheath subgroup** meets every few weeks
- First **in-person meeting** in Garching 3 weeks ago (look to have these at least annually)

Looking ahead to 2022

GENE-X

• Implementation of a nonlinear quasi-neutrality equation

GyselaX

• Experimentally relevant heat sources

PICLS

• Delta-f to full-f transition studies, open vs-closed field line regions in simple geometry

Ab-initio sheath studies

- Performing new simulations for ITER SOL and providing the boundary conditions
- First simulation of full DEMO SOL with fully resolved sheath

Immersed boundary sheath studies

• Impact of non-Maxwellianity of Fws on SOL properties in VOICE

Analytical sheath studies for gyrokinetic systems

• Extension of sheath model for treatment of multiple ion species

Exploring the limits of Gyrokinetics

- Evaluate high-frequency behavior of hybrid kinetic driftkinetic system, determine time step requirements for tokamak edge parameters
- Introduce tokamak geometry capability (ssV)
- Implementation of drift-kinetic electrons (AMReX)
- Implementation of customizable **sources and sinks** of particles, momentum and energy (AMReX)

Coupling to neutral and impurity physics

- Implement a constant-in-time particle source featuring the minimal properties of the one expected from neutrals
- Selection of existing test cases for a realistic guess of neutral particle sources
- Identify bottlenecks of main code implementations regarding impurity physics

Exploring the gyrokinetic moment hierarchy

• Implement full nonlinear model in a two-dimensional simple geometry (Z-pinch or linear machine)

[Sarazin PPCF 21] [Dif-Pradalier Comm. Phys. 22]

Studied impact of **poloidally localized limiter** in **GYSELA**

- Limiter acts as sink, steepens profiles nearby
- Acts a turbulence source, raising density fluct. levels compared to pol. symmetric boundary
- Leads to formation of Er well

GENE-X:

- Added electromagnetic effects (A_{ll})
- Implemented nonlinear polarization density
- Increasingly realistic **collisions**:
 - $BGK \rightarrow LBD \rightarrow FPL$
 - Most recent: full-f, NL, gyroaveraged, multi-species Fokker-Planck
- **3D extension** underway

polarization charges

and Ampere's law

P. Ulbl

Laplacian

GK free currents

Gyrokinetic moment approach:

- Allows smooth transition from GK system down to Braginskii, depending on # of moments
- Benchmarked against EM flux-tube GENE
- Moment approach applied to different collision operators (e.g. Sugama, GK Coulomb)
- First runs with nonlinear collisions
- Nonlinear Z-pinch benchmark (2d)

0.410

0.2

0 6

-0.4

 10^{0}

9

5 -0.2

 10^{-1}

GK Pitch

 $0.4 \ 10$

0 =

-0.2

-0.4

 10^{0}

3

9

0.05 0.2

GK Sugama

10

9

8

7

 10^{-1}

ν

4 6 5

[BJ Frei, JPP 22]

Testing the limits of gyrokinetics:

- **ssV code:** hybrid kinetic/driftkinetic
- Successfully reproduced FK ITG growth in δf
- Need to move to "global" profiles to test violation of GK
- Full-f approach: conservation important, sensitive equilibrium, need high order schemes

Driftkinetic ions, adiabatic electrons:

$$\frac{\nabla T(x)}{T(x)}\rho_i = 0.03, k_{\perp}\rho_i = 0.2, k_{\parallel}\rho_i = 0.002. \text{ Box: } x = 4\frac{2\pi}{k_{\perp}}, y = \frac{2\pi}{k_{\perp}}; v = -5 \dots 5v_{th}$$

Adding neutral physics

Milestones aim for adding neutral physics to **all main GK codes**

- First aim: **simple implementation** for each code for testing purposes
- Many approaches:
 - Gkeyll → 6d kinetic neutrals
 - Kinetic **characteristics** approach (as in GBS)
 - Fluid models (Pressure-diffusion + add-ons, e.g. Horsten et al.)
 - For PICLS: simplified internal **MC solver** (as in XGC1)
- For most realism: **coupling to Eirene**.
- Fluid codes are at least one step ahead of us → should have a common meeting with T3 developers!

Conclusion

T4 codes making progress.

What about delivery to TSVV Task 1?

Specific questions can be studied already now, but some important physics still lacking:

- Correct sheath physics
- Neutrals

Also keep in mind: Edge/SOL studies will usually be global, nonlinear → expensive!

Conclusion

T4 codes making progress.

What about delivery to TSVV Task 1?

Specific questions can be studied already now, but some important physics still lacking:

- Correct sheath physics
- Neutrals

Also keep in mind: Edge/SOL studies will usually be global, nonlinear → expensive!

Thank you for your attention!