
Use of OpenMP & OpenMP offload in 
GBS



■ SCITAS

OpenMP Offload for GPU

● OpenMP offload works for Intel, Nvidia and AMD GPUs
● Only a single source code
● Performance with the classical stencil-based Jacobi example:

○ High dependency on compilers and architectures
○ On Nvidia, better performance reached with Xlf compiler on Marconi100

  
Performance for different compilers/architectures (Fixed size array: N = 8192 x 8192)

Jacobi algorithm



■ SCITAS

OpenMP Offload in GBS

● Goal: use of Openmp-Offload in plasma evolution 

● Compare OpenMP offload and cuda 



■ SCITAS

OpenMP Offload in GBS 
● Example of 

OpenMP offloading 
in Gradient 
computation:



■ SCITAS

OpenMP Offload in GBS
● Example of OpenMP 

offloading in Gradient 
computation:



■ SCITAS

OpenMP for GPU On Marconi100
● We compared CUDA implementation (see Nicola’s talk) vs OpenMP-offload one
● Setup: Reduced TCV at 0.9T, 2 timesteps

● Turbulent mode
● Nx = 400, ny = 800, nz = 4 
● 1 node M100@CINECA

○ 1 NVIDIA V100 16GB 
● IBM Xlf Compiling Environment

Subroutine CUDA OpenMPOffload

Global Plasma module 0.85 0.89

parallel gradients 0.13 0.13

no Boussinesq vorticity 0.2 0.15

interpolation 0.019 0.01

perpendicular gradient 0.018 0.01

giroviscous term 0.01 0.04

diffusion operator 0.02 0.01



■ SCITAS

OpenMP in GBS for CPU

● Each GPU is usually associated to a single MPI process

● A multi-cores socket is usually associated to a GPU 

● Use OpenMP to exploit remaining CPU cores

● Use OpenMP from OpenMP-offload version is straightforward - compilation option
○ e.g: ifort -qopenmp -qno-openmp-offload 

—> compilation output:
remark #8711: OpenMP* directive disabled via command line.
!$omp target teams distribute parallel do simd collapse(2)
---------^



■ SCITAS

OpenMP in GBS for CPU
● We compared initial CPU serial implementation, pure OpenMP one and pure MPI one

● Setup: Reduced TCV at 0.9T, 2 timesteps
● Turbulent mode
● Nx = 600, ny = 1200, nz = 4 
● 1 node izar

○ 2 Intel Xeon-Gold processors running at 2.1 GHz, with 20 cores each
○ Intel compiler



Use of OpenACC in GBS-Plasma



■ SCITAS

OpenACC in GBS-RHS for GPU

● Use of OpenACC to port to GPU
○ Iterative process
○ “Fast” learning curve
○ Single source code
○ Easily exchanged to OpenMP for more portability
○ More efficient than OpenMP on Nvidia GPU for some 

compilers



■ SCITAS

OpenACC in GBS-Plasma for GPU



■ SCITAS

OpenACC in GBS-RHS for GPU

● Use of Piz-daint to test OpenACC with PGI compiler

● Goals: “replace” OpenMP directives use in previous work by OpenACC directives for 
loop and data transfer:

○ first, using managed memory with OpenACC compiling with -acc 
-ta=tesla:managed

○ then optimize data transfer following current openmp offload data transfer  



■ SCITAS

typical kernel in GBS-RHS



■ SCITAS

OpenACC in GBS-RHS for GPU
● We compared initial CPU serial implementation vs OpenACC one
● Setup: Reduced TCV at 0.9T, 2 timesteps

● Turbulent mode
● Nx = 1000, ny = 2000, nz = 4 
● 1 node piz-daint@CSCS

○ 1 NVIDIA Tesla P100 16GB 
● PGI Compiling Environment

Subroutine CPU serial (one 
core)

OpenACC (managed option) OpenACC (data transfer optimized)

time(s) time (s) speed up time (s) speed up

Global Plasma module 159. 57 x2.8 10.5 x15.1

parallel gradients 112.7 21.5 x2.9 1.44 x78

no Boussinesq vorticity 11.3 7 x1.58 1.6 x6.4

interpolation 3.3 2.9 x1.3 0.37 x8.8

perpendicular gradient 6.23 4.1 x1.5 0.74 x8.4

transfer HtoD/DtoH + Gpu page 
fault

35 7.



■ SCITAS

OpenACC in GBS-RHS for GPU
● We compared initial CPU MPI implementation vs OpenACC one
● Setup: Reduced TCV at 0.9T, 2 timesteps

● Turbulent mode
● Nx = 1000, ny = 2000, nz = 4 
● 1 node piz-daint@CSCS

○ 12-cores Intel Xeon - 2.6GHz
○ 1 NVIDIA Tesla P100 16GB 

● PGI Compiling Environment

Subroutine 12-cores MPI 
(1 node)

OpenACC (data transfer 
optimized)

time(s) time (s) speed up

Global Plasma module 23. 10.5 2.2

parallel gradients 16. 1.44 11.1

no Boussinesq vorticity 3. 1.6 1.8

interpolation 1. 0.37 2.7

perpendicular gradient 1.6 0.74 2.1



Porting GBS neutral module to 
GPUs
First result with OpenACC



■ SCITAS

Neutral dynamics with the method of characteristics 

● Consider simple kinetic neutral model (single species, ionization, charge exchange, and recombination) + B.C.

● Solution found using the noise-free characteristics method (and various approximations),see [Wersal and Ricci, Nucl. Fusion, 55 (2015)]: 

● with matrix elements resulting from complex integrals in space and velocity, involving Bessel functions etc., e.g. 

~NxNy grid ~(NxNy)
2 elements

2D to 2x(1D)

Ax = b



■ SCITAS

Code organization & strategy

Profiling the neutral module gives three main bottlenecks:
▪ compute_K: compute the K matrices
▪ Solve: solve neutral system
▪ Get_moments: compute various neutral moments for the plasma and/or diag.

• Combination of compute_K and matrix/vector multiplication

For ease of development:
▪ Implemented a miniapp with only neutrals (no solver -> third party)
▪ Used in OpenACC hackathon & basis for student project (Louis Jaugey)



■ SCITAS

▪ Only compute_K has been fully ported to GPU
▪ Initial timings show that GPU vs CPU (1 MPI task) ~5.4x speedup

• smaller TCV case: 50x50 grid, 50 points in velocity space, 30 points for 
interpolations

• Izar cluster @ EPFL, Xeon-Gold @ 2.1 GHz, NVIDIA V100 PCIe 32 GB
• Adding tasks reduces the speedup because trivially parallel w/o solver

Discussion
▪ Data transfers GPU <-> CPU are critical; reduce them as much as possible

• K matrices are huge ~(NxNy)2 

▪ Current work is to port get_moments (compute_K + mat/vec algebra)
• Further speedup from mat/vec algebra done on GPU
• Only need to transfer vectors back to GPU

Preliminary results



■ SCITAS

▪ First OpenACC implementation in the neutrals and RHS
▪ Directive based porting allows:

• Same source code
• Relatively quick porting
• “Portability”

▪ Finish porting all the computations of get_moments to GPU
▪ Port solver part to GPU
▪ Optimization of memory requirements

• Avoid unnecessary arrays
• Multi-GPU computations
• Use communication via GPU-to-GPU interconnect to update ghost cells, 

avoiding transfer GPU<->CPU

Conclusions & next steps



TSVV-3, 6 - FLUIDOPT:
 Profiling and opimisation Soledge3X



■ SCITAS

▪ Goals:
• profiling Soledge3X on SCITAS and Marconi clusters
• implement performance metrics to understand main bottlenecks
• optimize and porting to GPU some parts of the code

▪ Current status:
• Soledge3X uses MPI+OpenMP
• it relies on a mix explicit-implicit scheme
• it uses Petsc, Pastix, Hypre for implicit solvers
• many profilings have been performed 
• Soledge3X using PETSc has been installed on SCITAS and Marconi clusters with 

Intel toolchain 
• regular contacts with developers

▪ Previous conclusions:
• Profiling shows most of the computation time is spent within the libraries to solve the 

3D electric potential implicit equation
• MPI parallel efficiency depends on the ratio of the number of MPI processes and the 

number of magnetic flux surfaces
• OpenMP is quite efficient except for linear solvers (PETSC doesn’t use threads)



■ SCITAS

Time-stepping scheme 
● Main loop algorithm regarding main CPU time-consuming routines 

evolveExplicit evolveImplicitMomentum
2D (parallel direction)

evolveImplicitEnergy
2D (parallel direction)

evolveImplicitElectricPotential
3D



■ SCITAS

Parallelization 
● Spatial discretization:

○ structured grid in the (𝜓,𝜃,𝜑) coordinate system aligned with magnetic flux 
surfaces (𝜓 associated with the magnetic flux)

○ the solvers evolveImplicitMomentum and evolveImplicitEnergy are built 
using 2D stencils located in magnetic flux surface:
→ independant linear 2D mesh-based solvers are called for each value of 𝜓 
(magnetic flux surface)

○ However, the solver evolveImplicitElectricPotential is 3D mesh-based

● PETSC, PASTIX and HYPRE can be used for implicit solvers

● MPI domain decomposition according to the (𝜓,𝜃,𝜑) structured grid: the domain is 
in priority decomposed along the 𝜓 direction (according the magnetic flux surface 
workload), then along the 𝜃 direction

● MPI communicator for each magnetic flux surface (each value of 𝜓), useful for 2D 
mesh-based solvers

● OpenMP is used for each MPI process, except in PETSC and HYPRE solvers



Profiling and optimization of Solvers in 
Soledge3X



■ SCITAS

Miniapps for linear system

● Use of Miniapps

● New routine in Soledge3X for dumping matrices in PETSC format for all implicit solvers

● Miniapps load matrices and solve linear system with PETSC and AMGX (see Nicola’s talk on 
solvers)

● We study performance for different couples solver/preconditionner

● New python script to plot scaling according to #MPI processes



■ SCITAS

TCV-Timing solver 3D with PETSC
● TCV test-case: timing for the 3d linear solver (reusing preconditioning) using the matrix dumped from the TCV 

case (use of the miniapp)



■ SCITAS

TCV-Timing solver 3D with PETSC-zoom
● TCV test-case: timing for the 3d linear solver (reusing preconditioning) using the matrix dumped from the TCV 

case (use of the miniapp) - zoom



■ SCITAS

TCV-Timing solver 3D with PETSC
TCV-3D-36-MPI

Norm solver_precond
time reusing 

preconditionning
0,04488280278 gmres_gamg 0,7525878432
0,04488280284 lgmres_gamg 0,7535700276
0,04488280283 dgmres_gamg 0,7565472894
0,04575610405 cg_gamg 0,8222253188
0,04488280279 pgmres_gamg 0,9235707652
0,01940921561 bcgs_gamg 1,133472991
0,01439650238 cgs_gamg 1,443112343

0,0267549819 fgmres_gamg 1,926239386
0,03671255467 dgmres_sor 1,932614055
0,01401087505 fbcgsr_gamg 2,253752024
0,01401087505 fbcgs_gamg 2,278856417

2,22E-05 bcgsl_gamg 3,117366321
0,0157930183 gmres_hypre 3,457721147
0,0157930183 dgmres_hypre 3,486946244
0,0157930183 lgmres_hypre 3,489860036

0,01975034769 bcgs_hypre 4,499845477
0,0157930183 pgmres_hypre 4,50615459

0,02350953298 cgs_hypre 4,514745466
0,04159422673 cg_hypre 4,519228674



■ SCITAS

TCV-Timing solver 3D with PETSC
TCV-3D-288-MPI

Norm solver_precond
time reusing 
preconditionning

0,04588284819 gmres_gamg 0,1396856951
0,04749503765 cg_gamg 0,1405559438
0,04588284823 lgmres_gamg 0,1328434579
0,04588284824 dgmres_gamg 0,1449191147
0,04588284822 pgmres_gamg 0,1809122302
0,01965201655 bcgs_gamg 0,2143931612
0,02812369939 dgmres_sor 0,2688934538
0,01596058082 cgs_gamg 0,2779521719
0,02492266819 fgmres_gamg 0,3731893594
0,02634344349 fbcgs_gamg 0,4592761695
0,02634344349 fbcgsr_gamg 0,4427626932

1,68E-05 bcgsl_gamg 0,5735744894
0,0123953568 dgmres_pbjacobi 0,7672227672

0,01223723629 dgmres_jacobi 0,842321082
0,01592096196 lgmres_hypre 1,34849206
0,01592096196 dgmres_hypre 1,371061352
0,01592096196 gmres_hypre 1,312337736
0,02675850511 cgs_hypre 1,690713092
0,01592096196 pgmres_hypre 1,724306964



■ SCITAS

Miniapp: use of AMGX 
● Miniapp routine

….. PETSC INIT …..

! solving with AMGX                                                                                                                                                                  
call allocate_amgx_struct(amgx_struct)
call init_amgx(amgx_struct, MPI_COMM_WORLD, 2)
mataddr = A%v
rhs_addr = rhs_petsc%v
lhs_addr = lhs%v
call set_amgx(amgx_struct, mataddr, rhs_addr, lhs_addr, MPI_COMM_WORLD)
call solve_amgx(amgx_struct)

  ! solving with PETSC                                                                                                                                                                
call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetFromOptions(ksp,ierr)
call KSPSetOperators(ksp,A,A,ierr)
call KSPSolve(ksp,rhs_petsc,lhs_petsc,ierr)



■ SCITAS

Miniapp: use of AMGX 
● Matrix dumped from circ_3D_onlyD_noNeutr case (50x500x50)
● Miniapp allows to compare PETSC and AMGX solver
● Miniapp compiled with gnu-cuda
● Result with PETSC miniapp ok

with result Soledge checked
● Results for Phi 3D matrix:

(1MPI process Vs 1GPU)

 Solving with AMGX …..
("solver": "PBICGSTAB", "preconditioner":AMG) 
AMGX version 2.2.0.132-opensource
     --------------------------------------------------------------
     Total Iterations: 110
     Avg Convergence Rate:          0.8813
     Final Residual:    2.826928e-01
     Total Reduction in Residual:    9.221377e-07
     Maximum Memory Usage:           2.249 GB
     --------------------------------------------------------------
 TIME AMGX = 1.3683695793151855 
 AMGX solution norm L2  3125.2008633342521 
 Solving with Petsc .....
 TIME PETSC = 40.264363288879395 
 PETSc solution norm L2  3123.7779412178043  
 ---------- PETSC ----------------------
 Krylov solver: bcgs
 Preconditioner: gamg
  Number of iterations:       8
 Residual norm from solver and check:   2.9148633099987314E-002



■ SCITAS

Miniapp: use of AMGX 
● Matrix dumped from circ_3D_onlyD_noNeutr case (50x500x50)
● miniapp allows to compare PETSC and AMGX solver
● miniapp compiled with gnu-cuda
● result with PETSC miniapp ok

with result Soledge checked
● Results for Phi matrix:

(20MPI process Vs 1GPU)

 Solving with AMGX …..
("solver": "PBICGSTAB", "preconditioner":AMG) 
AMGX version 2.2.0.132-opensource
     --------------------------------------------------------------
     Total Iterations: 110
     Avg Convergence Rate:          0.8813
     Final Residual:    2.826928e-01
     Total Reduction in Residual:    9.221377e-07
     Maximum Memory Usage:           2.249 GB
     --------------------------------------------------------------
 TIME AMGX = 1.3683695793151855 
 AMGX solution norm L2  3125.2008633342521 
 Solving with Petsc .....
 TIME PETSC = 4.6425805091857910 
 PETSc solution norm L2  3123.9884891099045  
 ---------- PETSC ----------------------
 Krylov solver: bcgs
 Preconditioner: gamg
  Number of iterations:       9
 Residual norm from solver and check:   2.0763482339195199E-002



■ SCITAS

Miniapp: use of AMGX 
● Matrix dumped from circ_3D_onlyD_noNeutr case (50x500x50)
● miniapp allows to compare PETSC and AMGX solver
● miniapp compiled with gnu-cuda
● result with PETSC miniapp ok

with result Soledge checked
● Results for Phi matrix:

(40MPI process Vs 2GPU)

 Solving with AMGX …..
("solver": "PBICGSTAB", "preconditioner":AMG) 
AMGX version 2.2.0.132-opensource
     --------------------------------------------------------------
     Total Iterations: 110
     Avg Convergence Rate:          0.8813
     Final Residual:    2.826928e-01
     Total Reduction in Residual:    9.221377e-07
     Maximum Memory Usage:           2.249 GB
     --------------------------------------------------------------
 TIME AMGX = 2.6621108055114746  
 AMGX solution norm L2  3125.2008627290916 
 Solving with Petsc .....
 TIME PETSC = 3.5797915458679199 
 PETSc solution norm L2  3124.0291715355133  
 ---------- PETSC ----------------------
 Krylov solver: bcgs
 Preconditioner: gamg
  Number of iterations:       9
 Residual norm from solver and check:   2.1662928432653411E-002



■ SCITAS

Hypre

●  HYPRE

○ Hypre allows to exploit threads and GPUs

○ Hypre has been installed on Helvetios SCITAS cluser with openmp option

○ https://hypre.readthedocs.io/_/downloads/en/latest/pdf/ : “Configuration of hypre with threads 
requires an implementation of OpenMP. Currently, only a subset of hypre is threaded.”

○ Soledge3X has been linked with the Hypre library

○ OpenMP coarse-grain parallelism is implemented in Soledge3X:

—> Need to manage nested OpenMP regions when calling Hypre in Soledge3X 

https://hypre.readthedocs.io/_/downloads/en/latest/pdf/


■ SCITAS

Hypre - OpenMP
● Use of a Fortran miniapp to test OpenMP nested loops and cores pinning



■ SCITAS

Hypre - OpenMP
● With intel, don’t use cores pinning and let free threads (don’t use for instance KMP_AFFINITY="compact,1,0 and set 

OMP_NESTED=TRUE. 
● Example with 4 threads for 4 cores with nested regions:

—> First, 4 threads are created and bound to 4 cores
—> 3 cores idle in the OMP MASTER region 

 —> Output (KMP_AFFINITY=verbose,none):
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: 0-3
OMP: Info #191: KMP_AFFINITY: 1 socket x 4 cores/socket x 1 thread/core (4 total cores)
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27199 thread 0 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27241 thread 1 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27242 thread 2 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27243 thread 3 bound to OS proc set 0-3



■ SCITAS

Hypre - OpenMP
● With intel, don’t use cores pinning and let free threads (don’t use for instance KMP_AFFINITY="compact,1,0 and set 

OMP_NESTED=TRUE. 
● Example with 4 threads for 4 cores with nested regions:

—> Then Master thread creates 3 new threads (in red) at the time when it encounters a new nested OpenMP region
—> These new threads are binded to cores let idle by the 3 other threads created initially and waiting for the master thread at the    
end of the nested region.

 —> Output (KMP_AFFINITY=verbose,none):
OMP: Info #154: KMP_AFFINITY: Initial OS proc set respected: 0-3
OMP: Info #191: KMP_AFFINITY: 1 socket x 4 cores/socket x 1 thread/core (4 total cores)
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27199 thread 0 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27241 thread 1 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27242 thread 2 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27243 thread 3 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27428 thread 5 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27427 thread 4 bound to OS proc set 0-3
OMP: Info #251: KMP_AFFINITY: pid 27199 tid 27429 thread 6 bound to OS proc set 0-3



■ SCITAS

Hypre - OpenMP
● First promising tests with Soledge3X:

○ To use Hypre with OpenMP, just set OMP_NESTED option

○ OpenMP parallel regions where Hypre routines are called, OMP MASTER is required

○ To have a first estimation of performance, OMP MASTER clause has been added in Soledge3X in some 
of these regions

● In next slides, a timing of the following region in Soledge3X is displayed (named solvePhi with Hypre):

!$OMP MASTER                                                                                                                                                                         
!BoomerAMG: Because we are using a ParCSR solver, we need to get the object of the matrix and vectors to pass in to the ParCSR solvers                                                                                                                 

 
call HYPRE_SStructMatrixGetObject(hypreA, parA, ierr)
call HYPRE_SStructVectorGetObject(hypreb, parb, ierr)
call HYPRE_SStructVectorGetObject(hyprex, parx, ierr
call HYPRE_ParCSRBiCGSTABSetup(solver, parA, parb, parx, ierr)
call HYPRE_ParCSRBiCGSTABSolve(solver, parA, parb, parx, ierr)
!$OMP END MASTER              



■ SCITAS

Hypre - OpenMP
● Time To Solution for solvePhi with Hypre (BiCGSTAB + BoomerAMG precond)

  



■ SCITAS

Hypre - MPI
● Time To Solution for Vorticity solver with Hypre (with matrix building)

  



■ SCITAS

Hypre

●  HYPRE

○ To use Openmp with Hypre in Soledge3X:

■ export OMP_NESTED="TRUE"

■ use OMP MASTER rather than single in OMP regions calling Hypre

■ replace OMP DO by OMP SINGLE in regions calling hypre: 
--> to do: need to refactor theses regions to exploit threads 

--> Therefore some of these OpenMP // regions have to be revisited to re-introduce OpenMP work 
sharing by putting outside OpenMP MASTER some work



MPI Load Balancing in Soledge3X



■ SCITAS

LoadBalancing
● Presence of a wall in usual configurations 

● Cells in the wall are treated using a mask

● Currently, try to get same number of cells 
per MPI process

● Implicit Solvers don’t solve cells in the wall
—> can lead to a non-optimal load balancing between 

MPI processes

● New development to improve MPI load balancing taking into 
account the mask

● A weight factor is introduced for each cell with a value: 
○ = 1 for a cell outside the wall
○ < 1 for a cell in the wall

● The new MPI decomposition takes into account theses cell 
weights to share workload between MPI processes  



■ SCITAS

LoadBalancing
● Performance results for Circle test-case

180 degres - 32x256x64 -10it

3 MPI

MainLoop ImplPhi ImplE ImplG Expl
Initial version 105 32 24 25 18
new version(coef=0.01) 95 25 18 20 20

270 degres - 
9x1024x128-10it

21MPI

MainLoop ImplPhi ImplE ImplG Expl
Initial version 54 13 11 11 13
new version(coef=0.0001) 64 10 7 8 21



■ SCITAS

LoadBalancing
● Circle test-case: ScoreP analysis

○ installation of ScoreP.7.0 with intel toolchain
○ export PATH=~/profiling/scalasca_intel/scorep-7.0/ScoreP-7.0/bin:${PATH}
○ compilation with scorep mpiifort -O2 -qopenmp …

● ScoreP allows to analyse:

○ Communication efficiency (maximum across all processes of the ratio between useful 
computation time and total run-time): 

CommE = maximum across processes (ComputationTime / TotalRuntime) = 0.95

○ Load balance efficiency (ratio between average useful computation time - across all 
processes - and maximum useful computation time - also across all processes - :

LB=avg(ComputationTime) / max(ComputationTime) = 0.66



■ SCITAS

Profiling with Scorep
● Load balancing in Implicit & Explicit modules 

Implicit module 
New version - coef=0.01)

Implicit module
 (Initial Version)



■ SCITAS

Profiling with Scorep
● Load balancing in Implicit & Explicit modules 

Explicit module 
New version - coef=0.01)

Explicit module
 (Initial Version)


