

Ultra Long Turbulent Eddies, Magnetic Topology, and the Triggering of Internal Transport Barriers in Tokamaks

TSVV1 Workshop 2022

Arnas Volčokas, Justin Ball, Stephan Brunner

27/09/2022

https://arxiv.org/abs/2208.06159

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Turbulence transport problem

- Transport is dominated by turbulent transport
- Reducing cross-field energy/particle transport is critical in achieving fusion
- One way to reduce turbulent transport is with **internal transport barriers (ITBs)**

Swiss Plasma Center

• M. Kikuchi, M. Azumi. Frontiers in Fusion Research II. 2015

EPFL ITBs from at minimum q

ITBs are formed when:

- A power threshold is exceeded
- Low magnetic shear $\hat{s} \approx 0$ is present
- Facilitated by integer or low order rational q = M/N with $\hat{s} \approx 0$

Swiss Plasma Center • L.-G. Eriksson et al., Phys. Rev. Lett. 88, 145001 (2002)

• K Ida and T Fujita 2018 Plasma Phys. Control. Fusion 60 033001

EPFL Example of strong ITBs at JET

Swiss Plasma Center

• E Joffrin et al 2002 Plasma Phys. Control. Fusion 44 1739

What is the role of selfinteraction in ITB formation?

Swiss Plasma Center • J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

• Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020

• J. Dominski et al. 2015 Physics of Plasmas 22, 062303

EPFL No self-interaction

q = 2.5

EPFL No self-interaction

q = 2.5

Toroidal direction

EPFL No self-interaction

q = 2.5

Toroidal direction

EPFL Self-interaction

EPFL Self-interaction

q = 2

Toroidal direction

EPFL Self-interaction

q = 2

Toroidal direction

EPFL Self-interaction triggers ITBs?

Low magnetic shear + integer q

Strong self-interaction

- J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020
- J. Dominski et al. 2015 Physics of Plasmas 22, 062303

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL GENE flux-tube simulations

Swiss
 Plasma
 Center

• J. Ball et al. 2020 Journal of Plasma Physics 86(2), 905860207

EPFL Zero magnetic shear simulations

- Electrostatic ($\beta = 10^{-5}$) and collisionless
- Simulations with adiabatic and kinetic electrons
- Two cases Cyclone Base Case (CBC) or pure ITG drive

•
$$T_e = T_i$$

• $\hat{s} = 0$

•
$$R/L_T = 6.96$$

• $R/L_{T,i} = 6.96$

• $L_T/L_n = 0.321$

• $T_e = T_i$

• q = 1.4

• $R/L_{T,e} = 0$ • $R/L_n = 0$

•
$$q = 1.4$$

• $\hat{s} = 0$

• Dimits et al. 2000, Physics of Plasmas 7, 969

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
 - Binormal shift at the parallel boundary
 - Low magnetic shear simulations
 - TSVV1 deliverables
 - Conclusions

EPFL Ultra-long turbulent eddies

19

EPFL Heat flux and correlation

Swiss
 Plasma
 Center

EPFL Parallel correlation

21

Heat flux decreases due to interference between different parallel eddies

Swiss
 Plasma
 Center

EPFL CBC-like heat flux

Heat flux decreases due to interference between different parallel eddies

Long parallel waves appear in the system

EPFL Long parallel wave-like structures

EPFL Par. and perpendicular scales

Adiabatic electrons

Kinetic electrons

 $\tau_{turb,AE} \approx 9 \frac{R}{c_i}$ $L_{\perp,AE} \approx O(10)\rho_i$ $L_{\parallel,AE} \approx v_{th,i}\tau_{turb,AE}$

 $\tau_{turb,KE} \approx 3\frac{R}{c_i}$ $L_{\perp,KE} \approx O(10)\rho_i$ $L_{\parallel,KE} \approx v_{th,e}\tau_{turb,KE}$

EPFL Par. and perpendicular scales

Adiabatic electrons

Kinetic electrons

 $\tau_{turb,AE} \approx 9 \frac{R}{c_i}$ $L_{\perp,AE} \approx O(10)\rho_i$ $L_{\parallel,AE} \approx v_{th,i}\tau_{turb,AE}$

Ion thermal velocity

 $\tau_{turb,KE} \approx 3\frac{R}{c_i}$ $L_{\perp,KE} \approx O(10)\rho_i$ $L_{\parallel,KE} \approx v_{th,e}\tau_{turb,KE}$

Electron thermal velocity

EPFL N_{pol} study conclusions

- Simulations with kinetic electrons at zero magnetic shear require hundreds of poloidal turns to achieve convergence
- Kinetic electrons set the parallel length scale
- In simulations with electron temperature gradient long parallel waves emerge
- Different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive.

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Parallel boundary shift

EPFL Parallel boundary shift

q = 2.01

Toroidal direction

Swiss
 Plasma
 Center

EPFL $N_{pol} = 1, \Delta y$ scan

Different behaviour between CBC and pITG drives

EPFL $N_{pol} = 1, \Delta y$ scan

Different behaviour between CBC and pITG drives

Transition from slab to toroidal ITG

EPFL $N_{pol} = 1, \Delta y$ scan

Different behaviour between CBC and pITG drives

Transition from slab to toroidal ITG

Width scales with electron

mass

- Linear growth rate
- ----- Heat flux at $\Delta y = 0$
- --- Linear trend
- --**A**-- Intermittency
- --- "Squeezing"
- --- "Stretching"

Swiss Plasma Center

EPFL Intermittency

- −−− Linear growth rate −−−− Heat flux at $\Delta y = 0$ −−●−− Linear trend −−▲−− Intermittency −−■−− "Squeezing"
- --- "Stretching"

EPFL "Squeezing"

60-40- $C_{\perp}(\mathbf{x}_1 = (0, 0), \mathbf{x}_2)$ 20y2/ρ_i -0 0 -20--40 -60 -20Ó 20 x_2/ρ_i

Snapshot

Correlation

EPFL "Squeezing"

EPFL CBC-like heat flux

- ----- Linear growth rate ----- Heat flux at $\Delta y = 0$
- --- Linear trend
- --- Intermittency
- --- "Squeezing"
- --- "Stretching"

EPFL pITG heat flux with fixed $\Delta y = 0.61 \rho_i$

EPFL Binormal shift study

- Allows to study self-interaction in a region close to rational-q
- Proximity to a rational surface has a large impact on the heat flux
- Different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive.

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
 - TSVV1 deliverables
 - Conclusions

EPFL Linear shear scan

EPFL Gradients and auto-correlation

EPFL Profile corrugations

EPFL Side note: low shear eddy length

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Deliverables and milestones

Conference contribution and a paper under review: Ultra Long Turbulent Eddies, Magnetic Topology, and the Triggering of Internal Transport Barriers in Tokamaks A. Volčokas, J. Ball, S. Brunner, arXiv:2208.06159	
 M1.6 As a simple intermediate step towards the L-H transition, <u>investigate the</u> <u>ability of standard, existing flux-tube simulations to model ITBs</u>; if successful, validate against experiment as a proof of principle. 	Target date 06/2022
 D1.2 ITB physics studied and key elements that could be transferred to edge transport barriers identified 	Target date 09/2022
 M4.1 <u>Quantify momentum drive from rational vs irrational surfaces in ITBs</u> and compare to momentum drive at plasma edge and <u>determine relationship of</u> parallel correlation length with magnetic shear. 	Target date 12/2021
 D4.1 Quantification of ITB momentum drive from rational vs. irrational surfaces and comparisons to plasma edge 	s Target date 02/2022

The proposed plan has not changed substantially and we are on track, working Plasma towards the milestones.

Swiss

Center

EPFL Conclusions

- Kinetic electrons necessary for accurately modelling low magnetic shear simulations
- Electron velocity sets the parallel length scale of turbulent eddies
- At low magnetic shear turbulent transport is very sensitive to exact q value
- Significantly different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive
- Time stationary ITB-like plasma profile corrugations around rational surface in simulations with low magnetic shear

EPFL Future work

- Increase realism, e.g. including finite collisions, plasma shaping and **electromagnetic effects**
- Investigate TEM and ETG regimes
- Extend this work to stellarators where global shear tends to be very small
- Possibility of deriving **reduced self-interaction models**
- Attempt to **measure ultra long eddies** in experiments
- More detailed low but finite shear simulations

Thank you for your attention

Swiss Plasma Center

EPFL Theory, Simulation, Verification and Validation

Research is being caried out in the framework of TSVV1:

Physics of the L-H Transition and Pedestals

Additional slides

Swiss
 Plasma
 Center