

Ultra Long Turbulent Eddies, Magnetic Topology, and the Triggering of Internal Transport Barriers in Tokamaks

TSVV1 Workshop 2022

Arnas Volčokas, Justin Ball, Stephan Brunner

27/09/2022

https://arxiv.org/abs/2208.06159 ¹

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Outline

- **Motivation and background**
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Turbulence transport problem

- Transport is dominated by turbulent transport
- Reducing cross-field energy/particle transport is critical in achieving fusion
- One way to reduce turbulent transport is with **internal transport barriers (ITBs)**

Swiss **Plasma Center**

• X. Garbet et al. 2010 Nucl. Fusion 50 043002

• M. Kikuchi, M. Azumi. Frontiers in Fusion Research II. 2015

EPFL ITBs from at minimum q

ITBs are formed when:

- A power threshold is exceeded
- Low magnetic shear $\hat{s} \approx 0$ is present
- Facilitated by integer or low order rational $q =$ M/N with $\hat{s} \approx 0$

Swiss Plasma Center

• L.-G. Eriksson et al., Phys. Rev. Lett. 88, 145001 (2002)

• K Ida and T Fujita 2018 Plasma Phys. Control. Fusion 60 033001

E PFL Example of strong ITBs at JET

Swiss STAR Plasma Center

• E Joffrin et al 2002 Plasma Phys. Control. Fusion 44 1739

What is the role of selfinteraction in ITB formation?

- J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020
- J. Dominski *et al.* 2015 *Physics of Plasmas* **22**, 062303

EPFL No self-interaction

 $q = 2.5$

Swiss The Co Plasma Center

EPFL No self-interaction

 $q = 2.5$

Toroidal direction

Swiss The Co Plasma Center

EPFL No self-interaction

$$
q=2.5
$$

Toroidal direction

EPFL Self-interaction

Swiss The Co Plasma Center

EPFL Self-interaction

 $q = 2$

Toroidal direction

Swiss \mathbf{r} **Plasma Center**

EPFL Self-interaction

Toroidal direction

Swiss \mathbf{r} **Plasma Center**

 $q = 2$

EPFL Self-interaction triggers ITBs?

Low magnetic shear + integer q

Strong self-interaction

- J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207
- Ajay CJ, Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations, Thesis EPFL Lausanne, 2020
- J. Dominski *et al.* 2015 *Physics of Plasmas* **22**, 062303

EPFL Outline

- Motivation and background
- **Methods**
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL GENE flux-tube simulations

Swiss Plasma Center

• J. Ball *et al.* 2020 *Journal of Plasma Physics* **86(2)**, 905860207

EPFL Zero magnetic shear simulations

- Electrostatic ($\beta = 10^{-5}$) and collisionless
- Simulations with adiabatic and **kinetic electrons**
- Two cases Cyclone Base Case (CBC) or pure ITG drive

$$
\bullet\ \ T_e=T_i
$$

 $\bullet \ \hat{s}=0$

• $R/L_T = 6.96$

• $R/L_{T,i} = 6.96$

 $T_e = T_i$

- $L_T/L_n = 0.321$
-
- $q = 1.4$

• $R/L_{T,e}=0$ • $R/L_n=0$

$$
\bullet \ \ q=1.4
$$

 $\bullet \ \hat{s}=0$

wiss **Plasma Center**

• Dimits et al. 2000, Physics of Plasmas **7**, 969

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
	- Binormal shift at the parallel boundary
	- Low magnetic shear simulations
	- TSVV1 deliverables
	- Conclusions

Ultra-long turbulent eddies

ш

EPFL Heat flux and correlation

EPFL Parallel correlation

Heat flux decreases due to interference between different parallel eddies

EPFL CBC-like heat flux

Heat flux decreases due to interference between different parallel eddies

Long parallel waves appear in the system

EPFL Long parallel wave-like structures

EPFL Par. and perpendicular scales

Adiabatic electrons The Rinetic electrons

 $\tau_{turb,AE} \approx 9\frac{R}{c_i}$ $L_{\perp,AE} \approx O(10)\rho_i$ $L_{\parallel,AE} \approx v_{th,i} \tau_{turb,AE}$

 $\tau_{turb,KE} \approx 3 \frac{R}{c_i}$ $L_{\perp,KE} \approx O(10)\rho_i$ $L_{\parallel,KE} \approx v_{th,e} \tau_{turb,KE}$

EPFL Par. and perpendicular scales

Adiabatic electrons The Kinetic electrons

$$
\tau_{turb,AE} \approx 9 \frac{R}{c_i}
$$

$$
L_{\perp,AE} \approx O(10)\rho_i
$$

$$
L_{\parallel,AE} \approx v_{th,i}\tau_{turb,AE}
$$

$$
\tau_{turb,KE} \approx 3 \frac{R}{c_i}
$$

$$
L_{\perp,KE} \approx O(10)\rho_i
$$

$$
L_{\parallel,KE} \approx v_{th,e}\tau_{turb,KE}
$$

Ion thermal velocity Electron thermal velocity

$EPEL$ N_{pol} study conclusions

- Simulations with kinetic electrons at zero magnetic shear require hundreds of poloidal turns to achieve convergence
- **Kinetic electrons** set the parallel length scale
- In simulations with electron temperature gradient long parallel waves emerge
- Different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive.

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Parallel boundary shift

EPFL Parallel boundary shift

Toroidal direction

E PFL $N_{pol} = 1$, Δy scan

Different behaviour between CBC and pITG drives

E PFL $N_{pol} = 1$, Δy scan

Different behaviour between CBC and pITG drives

Transition from slab to toroidal ITG

E PFL $N_{pol} = 1$, Δy scan

Different behaviour between CBC and pITG drives

Transition from slab to toroidal ITG

Width scales with electron mass

- Linear growth rate
- Heat flux at $\Delta y = 0$ $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$
- Linear trend -- \blacktriangleright - \blacktriangleright
- Intermittency $-\triangle$ $-$
- --⁻⁻- "Squeezing"
- "Stretching" --♠--

Swiss **Contract Plasma Center**

Linear growth rate Heat flux at $\Delta y = 0$ $-\cdots$ Linear trend -- \blacktriangleright - \blacktriangleright Intermittency $-\triangle$ ----⁻⁻- "Squeezing" "Stretching" --♠--

 $\Delta y/L_v$ 0.0 0.1 0.3 0.2 200 0.4 pITG 0.37 $\overset{\text{\tiny 6}}{\sim} 100$ 0.2 th 0.1 $\overline{0}$ $\frac{1}{40}$ 0.0 20 $\overline{30}$ 10 $\overline{0}$ $\Delta y/\rho_i$

Swiss The Contract of Street Plasma Center

EPFL Intermittency

- Linear growth rate $---$ Heat flux at $\Delta y = 0$ Linear trend -- \blacktriangleright - \blacktriangleright Intermittency $-\triangle$ --
- --⁻⁻- "Squeezing" "Stretching" $-\bullet$ --

EPFL "Squeezing"

Snapshot Correlation

Swiss **STAR Plasma Center**

EPFL "Squeezing"

EPFL CBC-like heat flux

- Linear growth rate
- $---$ Heat flux at $\Delta y = 0$
- Linear trend -- \blacktriangleright - \blacktriangleright
- Intermittency $-\triangle$ $-$
- --⁻⁻- "Squeezing"
- "Stretching" $-\bullet$ --

EPFL pITG heat flux with fixed $\Delta y = 0.61 \rho_i$

Center

EPFL Binormal shift study

- Allows to study self-interaction in a region close to rational-q
- Proximity to a rational surface has a large impact on the heat flux
- Different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive.

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- \rightarrow Low magnetic shear simulations
	- TSVV1 deliverables
	- Conclusions

EPFL Linear shear scan

EPFL Gradients and auto-correlation

EPFL Profile corrugations

EPFL Side note: low shear eddy length

EPFL Outline

- Motivation and background
- Methods
- Ultra-long turbulent eddies
- Binormal shift at the parallel boundary
- Low magnetic shear simulations
- TSVV1 deliverables
- Conclusions

EPFL Deliverables and milestones

The proposed plan has not changed substantially and we are on track, working **Plasma** towards the milestones.

Swiss

Center

EPFL Conclusions

- Kinetic electrons necessary for accurately modelling low magnetic shear simulations
- Electron velocity sets the parallel length scale of turbulent eddies
- At low magnetic shear turbulent transport is very sensitive to exact q value
- Significantly different behaviour in simulations with pure ITG drive vs a mixed ITG/TEM drive
- Time stationary ITB-like plasma profile corrugations around rational surface in simulations with low magnetic shear

EPFL Future work

- Increase realism, e.g. including finite collisions, plasma shaping and **electromagnetic effects**
- Investigate TEM and ETG regimes
- Extend this work to stellarators where global shear tends to be very small
- Possibility of deriving **reduced self-interaction models**
- Attempt to **measure ultra long eddies** in experiments
- More detailed low but finite shear simulations

Thank you for your attention

Swiss **Contract Plasma Center**

EPFL Theory, Simulation, Verification and Validation

Research is being caried out in the framework of TSVV1:

Physics of the L-H Transition and Pedestals

Additional slides

