

Joorad

Tackling turbulence from pedestal top to foot with global and local GENE simulations

Leonhard Leppin¹, Tobias Görler¹, Marco Cavedon¹, Mike Dunne¹, Elisabeth Wolfrum¹, Frank Jenko¹, ASDEX Upgrade Team²

¹*Max Planck Institute for Plasma Physics, Garching b. München, Germany* 2*See author list of U. Stroth et al. 2022 Nucl. Fusion 62 042006*

EUROfusion

 \circ

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Intro

Relates to Key delivarable 1: Gyrokinetic turbulence characterization in H-mode pedestal

Highlight: Heat flux structure of a pedestal – in radius and scale

Scenario: ELMy H-mode pedestal from AUG

- Asdex Upgrade $\#31529$ [1]
- NBI + ECRH heating, $P_{tot} \sim 8.7$ MW
- On-axis B-field -2.5 T, plasma current 1MA
- ELM- synchronized profiles (6ms after ELM, almost pre-ELM)
- pressure-constrained magnetic equilibrium

[1] Cavedon et al, PPCF, 2017

Scenario: ELMy H-mode pedestal from AUG

- Asdex Upgrade $\#31529$ [1]
- NBI + ECRH heating, $P_{tot} \sim 8.7$ MW
- On-axis B-field -2.5 T, plasma current 1MA
- ELM- synchronized profiles (6ms after ELM, almost pre-ELM)
- pressure-constrained magnetic equilibrium

Instabilities via linear, local sim. ETG heat flux via nonlinear, local sim.

[1] Cavedon et al, PPCF, 2017

Identification based on:

- Scale / wavenumber range
- Frequency (drift direction)
- Sensitivity to gradients $(\mathsf{T}_{\mathsf{i}},\,\mathsf{T}_{\mathsf{e}},\,\mathsf{n})$
- Sensitivity to plasma $β$ and coll.
- Diffusivity ratios ("Fingerprints" [3])
- **Parallel mode structure**
- Velocity space structure
- Cross-phases

[3] Kotschenreuther et al, Nucl. Fus., 2019

• **Ion scales:**

Top: TEM/MTM \rightarrow Center: ITG/TEM Growth rate gap at ρ_{tor} = 0.94 (blue)

- **Electron scales:** ETG with additional intermediate $\mathsf{k}_{{}_{\mathsf{y}}}$ ETG instabilities towards pedestal center
- Overall growth rates increase towards pedestal center/ foot

Close to linear KBM threshold

The pedestal is close to a linear KBM threshold. (In agreement with [4]) Distance decreases towards pedestal foot.

[4] Hatch et al, Nucl. Fus., 2015

● **Ion scales:**

Top: TEM/MTM \rightarrow Center: ITG/TEM Growth rate gap at ρ_{tor} = 0.94 (blue)

- **Electron scales:** ETG with additional intermediate $\mathsf{k}_{{}_{\mathsf{y}}}$ ETG instabilities towards pedestal center
- Overall growth rates increase towards pedestal center/ foot

Connecting linear instabilities and nonlinear modes: Frequencies

→ Linear frequencies remain present at pedestal top and center

ASDEX Uporade

Connecting linear instabilities and nonlinear modes: Cross phases

Cross phases Electrons (nonlin x=089; lin x=0.88, kxcenter=max)

Cross phases Electrons (nonlin x=097; lin x=0.97, kxcenter=max)

 \rightarrow Cross phases support that some linear mode characteristics survive in particular at pedestal top

Global, ion scale: Turbulent heat fluxes

- Simulation is stable and quasi-stationary state is reached
- ExB shear reduces heat fluxes by -3

- Turb. ion heat flux vanishes in center
- Ion-scale electron heat flux vanishes as well

- Turb. ion heat flux vanishes in center
- Ion-scale electron heat flux vanishes as well

- Turb. ion heat flux vanishes in center
- Ion-scale electron heat flux vanishes as well
- Turbulent heat flux levels are comparable to experimental results [2], but electron heat flux in center missing?

[2] Viezzer et al, PPCF, 2020

- Turb. ion heat flux vanishes in center
- Ion-scale electron heat flux vanishes as well
- Turbulent heat flux levels are comparable to experimental results [2], but electron heat flux in center missing?
- ➔ ETG takes over electron heat transport in steep gradient region from TEM at pedestal top

[2] Viezzer et al, PPCF, 2020

Two subjective observations from

1) RMPs for ELM suppression (Resonant magnetic perturbations for suppression of edge localized modes)

- **→ Magnetic non- axisymmetries possibly not only relevant for stellarators but also ITER operation**
- **2) Discussion point by Jon Hillesheim (JET): Consider multi-ion species effects on your work (eventually we operate D-T plasmas; "there is nothing more powerful in science than a testable hypothesis")**

M A X- PL A N C K - I N S T I T U T F Ü R PL A SM AP H Y SI K | L E O N H A R D L E PP I N | T SV V 1 P R O G R E S S W O R KS H O P, G A R C H I N G , 2 7 . SE P. 2 0 2 2 2 0

Other profiles

Heat flux profile without ExB shear

Heat flux spectra

Relation to TSVV Workplan

Status of implementation

General background distribution functions available in GENE due to Alessandro di **Siena**

Status of macroscopic (MHD-like) instabilites from GENE side

• Specific implementation of shifted Maxwellian in progress / done by Petch Jitsuk (PhD @ Wisonsin Madison)

Recent GENE upgrade

In standard GENE: Collect all temporal derivatives on one side of equation and introduce modified distribution function q:

$$
\frac{\partial f_1}{\partial t} - \frac{q}{mc} \frac{\partial A_{1||}}{\partial t} \frac{\partial F_0}{\partial v_{||}} = \dots \quad \text{or} \quad g_1 := f_1 - \frac{q}{mc} \bar{A}_{1||} \frac{\partial F_0}{\partial v_{||}} \quad \implies \quad \frac{\partial g_1}{\partial t} = \dots
$$

- **Problem:** global, nonlinear, electromagnetic simulations with experimental plasma β values tend to be unstable.
- **Solution:** Keep unmodified distribution f and use Ampere's law $\nabla^2_{\perp} A_{\parallel} = -\frac{4\pi}{c} j$
to derive field equation for $E_{\parallel}^{\text{ind}} = -\frac{1}{c} \frac{\partial A_{\parallel}}{\partial t}$ [5] which can be solved numerically.

$$
\left(\nabla_{\perp}^2 + \frac{4\pi}{c^2} \sum_b \frac{q_b^2}{m_b} \int d^3v \mathcal{G}^\dagger v_{\parallel} \frac{\partial F_b}{\partial v_{\parallel}} \mathcal{G}\right) E_{\parallel}^{\text{ind}} = \frac{4\pi}{c^2} \sum_b q_b \int d^3v \mathcal{G}^\dagger \{v_{\parallel} R_b\}
$$

Implementation: Fully integrated into GENE master branch and compatible with block-structured velocity space grids

[5] Crandall, PhD Thesis, 2019