

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Gyrokinetic turbulence studies of the transition from open to closed field lines in tokamaks

P. DONNEL¹, G. DIF-PRADALIER¹, G. DI GIANNATALE², L. VILLARD², V. GRANDGIRARD¹, L. NGUYEN³, K. OBREJAN¹, E. BOURNE¹, X. GARBET¹, P. GHENDRIH¹, Y.MUNSCHY¹, Y. SARAZIN¹, R. VARENNES¹

> *1: CEA, IRFM, Saint-Paul-lez-Durance, France 2: SPC, EPFL, Lausanne, Switzerland 3: CEA, DIF, Bruyères-le-Châtel, F-91297 France*

- Transport in the edge is crucial for the global confinement
- LH transition is happening close to the transition between open and closed field lines
- LH transition is related to the deepening of a radial electric field well
- Origin of this radial electric field not fully understood

Objective: Study the impact of the transition between closed and open field lines with a gyrokinetic code

GYROKINETIC SIMULATION WITH A LIMITER AND ADIABATIC ELECTRONS

Limiter leads to level of fluctuations consistent with experimental measurements [Dif-Pradalier 2022]

The hybrid electron model [Idomura 2016] treats

- Trapped electrons kinetically
- Passing electrons adiabatically

$$
-\sum_{i} A_{i} \nabla_{\perp} \cdot \left(\frac{n_{i_{0}}}{B_{0}^{2}} \nabla_{\perp} \phi\right) - A_{e} \nabla_{\perp} \cdot \left(\bar{\alpha}_{t0} \frac{n_{e_{0}}}{B_{0}^{2}} \nabla_{\perp} \phi\right) + \bar{\alpha}_{p0} \frac{n_{e_{0}}}{Z_{0}^{2} T_{e}} \left(\phi - \langle \phi \rangle_{\text{FS}}\right) = \sum_{i} Z_{i} \delta n_{i} - \delta n_{e}^{\text{trap}}.
$$
\nTrapped fraction

Passing fraction

The zonal mode is treated fully kinetically as in ORB5 [Lanti 2018]

$$
-\sum_{i} A_{i} \nabla_{\perp} \cdot \left(\frac{n_{i_{0}}}{B_{0}^{2}} \nabla_{\perp} \phi\right) - A_{e} \nabla_{\perp} \cdot \left(\frac{n_{e_{0}}}{B_{0}^{2}} \nabla_{\perp} \phi\right) = \sum_{i} Z_{i} \delta n_{i} - \delta n_{e} \quad \text{for} \quad n = 0, m_{\star} = 0
$$

$$
\mathcal{L}\phi_{m,n} + \left[\bar{\alpha}_{p0}\frac{n_{e_0}}{Z_0^2 T_e} \left(\phi_{m,n} - \left(1 - \mathcal{M}^{SOL}\right)\right)\left(\phi_{m,n}\right)_{\text{FS}}\right) = \rho_{m,n}^{TKE, LIM} \qquad \forall (m,n) \neq (n=0, m_{\star}=0)
$$

with

$$
\rho_{m,n}^{TKE, LIM} = \rho_{m,n}^{TKE} + \left[\bar{\alpha}_{p0} \frac{n_{e_0}}{Z_0^2 T_e} \left[\Lambda \left(\mathcal{M}^{SOL} - \mathcal{M}^{mat} \right) \left(T_e - T_e^{b.c.} \right) + \left(\mathcal{M}^{mat} - \mathcal{M}^{wall} \right) \phi^{bias} \right] \right]
$$

The trapped fraction definition is modified in the SOL:

- \triangleright Electrons with trajectory that intercept the wall are considered as adiabatic (=passing in the core)
- \triangleright Other electrons are treated kinetically (= trapped in the core)

The zonal component is still treated fully kinetically in the core but not in the SOL

$$
\boldsymbol{\phi}^{LIM} = \boldsymbol{\phi}^{\mathrm{TKE}} + \left[1 - \mathcal{M}^{SOL}(r)\right] \left[-\boldsymbol{\phi}^{\mathrm{TKE}}_{(m_\star = 0, n = 0)} + \boldsymbol{\phi}^{\mathrm{FKE}}_{(m_\star = 0, n = 0)} \right]
$$

- Small impact of the limiter position in the deep core
- Large impact of limiter position on the poloidal asymmetry of the potential.

POLOIDAL ROTATION

Will be compared with Doppler measurements. WPTE experiment on WEST (2022) with L. Vermare

RADIAL ELECTRIC FIELD AT THE EDGE: LIMITER BOTTOM

- Spontaneous transition of the edge Er well. Qualitative agreement with experiments.
- Origin of the transition : physics or numerical?

RADIAL ELECTRIC FIELD AT THE EDGE: LIMITER TOP

- No large Er well
- No transition

RADIAL ELECTRIC FIELD AT THE EDGE: LIMITER IN

• Fluctuations of the radial electric field

GENERATION OF LARGE POLOIDAL ASYMMETRIES: LIMITER BOTTOM

GENERATION OF LARGE POLOIDAL ASYMMETRIES: LIMITER TOP

GENERATION OF LARGE POLOIDAL ASYMMETRIES: LIMITER IN

NECCESITY TO INCLUDE POLOIDAL AND TEMPORAL EVOLUTION OF THE DENSITY IN THE QUASI-NEUTRALITY

$$
\mathcal{L}\phi_{m,n} + \overline{\tilde{\alpha}_{p0}} \overline{\tilde{Z}_{0}^{2}T_{e}} \left(\phi_{m,n} - \left(1 - \mathcal{M}^{SOL}\right) \langle \phi_{m,n} \rangle_{\text{FS}}\right) = \rho_{m,n}^{TKE, LIM} \qquad \forall (m,n) \neq (n=0, m_{\star}=0)
$$

with

$$
q_{m,n}^{TKE, LIM} = \rho_{m,n}^{TKE} + \frac{n_{e0}}{\bar{\alpha}_{p0}} \frac{n_{e0}}{Z_0^2 T_e} \left[\Lambda \left(\mathcal{M}^{SOL} - \mathcal{M}^{mat} \right) \left(T_e - T_e^{b.c.} \right) + \left(\mathcal{M}^{mat} - \mathcal{M}^{wall} \right) \phi^{bias} \right]
$$

$$
\mathcal{L} = -\sum_{i} A_{i} \nabla_{\perp} \cdot \left(\frac{n_{i_{0}}(r)}{B_{0}^{2}} \nabla_{\perp} \right)
$$

The terms in red are currently functions of the flux surface computed at the initial time.

They need to be functions of the poloidal angle and be dynamically computed

 $-\nabla \cdot (\alpha \nabla \phi) + \beta (\phi - \gamma \langle \phi \rangle_{\text{FS}}) = \text{RHS}$

- Finite element-like approach to solve the equation in weak form using a gradient conjugate method.
- For the moment, $α$ and $β$ are functions of flux surfaces and do not evolve in time
- Time evolution of the coefficients is easy
- \cdot α and β as 2D functions require more work
- This solver already allows generalized geometry [K. Obrejan]

GYSELA WITH GENERALISED GEOMETRY

- Culham analytical equilibrium (include aspect ratio, elongation, triangularity)
- No X-point allowed for the moment. Preliminary studies have been done [E. Bourne, submitted]
- GAM dynamic on shaped plasmas and linear growth rate dependence of ITG with respect to elongation retrieved

- A limiter model compatible with the hybrid electron model has been developed and implemented in both GYSELA and ORB5
- A large impact of the position of the limiter is found on the level of poloidal asymmetry and the amplitude of the radial electric field
- The evolution of the density and the generation of large poloidal asymmetries in the SOL imply that the quasi-neutrality equation needs to be generalized. Possible but require more numerical developments
- A spontaneous transition of the electric field well is found in the case of ion magnetic drift pointing in the direction of the limiter, as expected from experiments

 \triangleright Is it due to physics or simplifications in the QN equation?

↗

