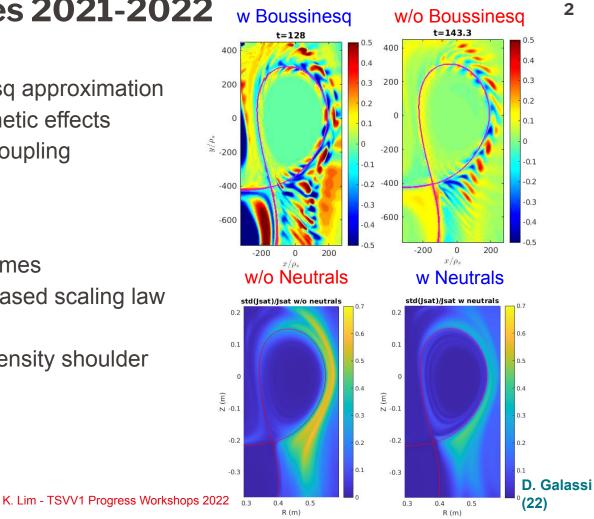
# Investigation of the plasma dynamics in double-null configurations

Kyungtak Lim<sup>1</sup>

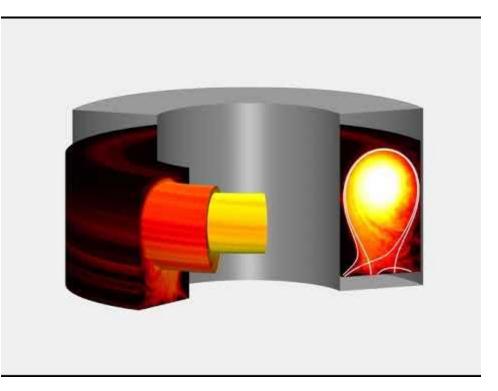
Team GBS : M. Giacomin<sup>2</sup>, D. Mancini<sup>1</sup>, A. Coelho<sup>1</sup>, L. Stenger<sup>1</sup>, B. De Lucca<sup>1</sup> and P. Ricci<sup>1</sup> <sup>1</sup>École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland <sup>2</sup>York Plasma Institue, Physics Department, University of York, UK




TSVV1 Progress Workshop, September 27-28, 2022

#### **EPFL** GBS Deliverables 2021-2022

- 1. Develop the GBS code
  - a. to avoid the Boussinesq approximation
  - b. to include electromagnetic effects
  - c. to implement neutral coupling
- 2. Explore theoretical aspects
  - a. Different turbulent regimes
  - b. First-principle theory based scaling law
  - c. Density limit
  - d. Neutral dynamics -> density shoulder
  - e. etc...


SWISS

CENTER



#### **EPFL GBS** : a **3D** fluid code for edge plasma turbulence

1. Two-fluid, self-consistent, global, flux-driven turbulence code

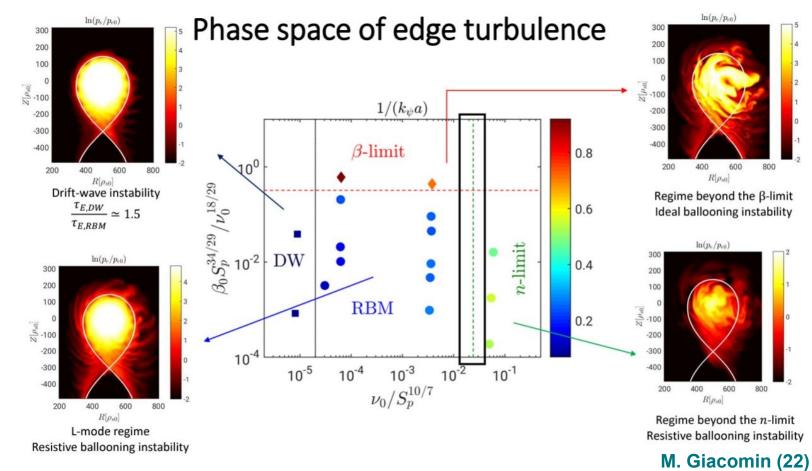




#### **EPFL GBS** model

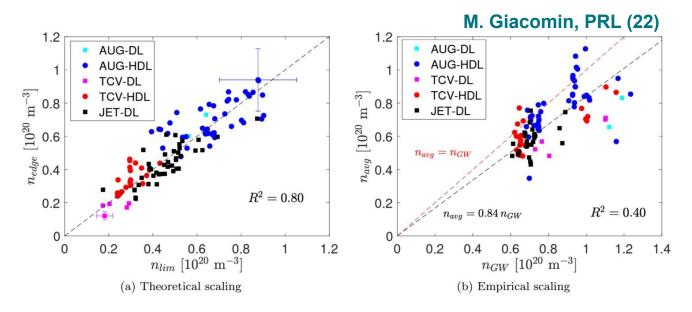
CENTER






#### EPFL

SWISS

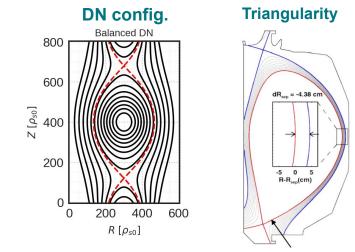

PLASMA

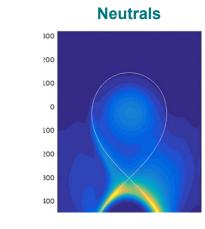
CENTER

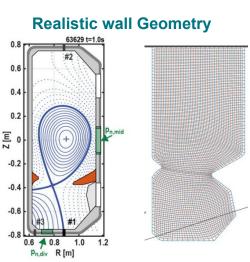


K. Lim - TSVV1 Progress Workshops 2022

#### **EPFL** Comparison of the density limit with experiments 6





A first-principles scaling law, in agreement with experimental results, shows that the increase of boundary turb. transport with plasma collisionality sets the maximum density achievable in tokamaks.




#### **EPFL** What is next?

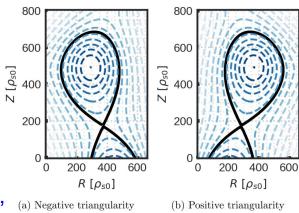
- 1. SN simulations with positive/negative triangularity (to be submitted)
- 2. DN simulations with different magnetic balance (ongoing)
- 3. DN simulations + triangularity + neutrals + realistic wall geometry



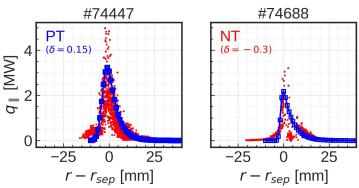




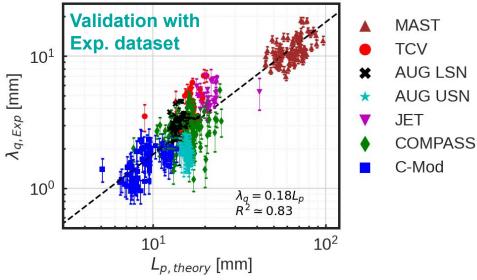



### **EPFL** Reduced boundary plasma turbulence in negative triangularity GBS NT/PT plasma

- 1. Conventional D-shaped H-mode plasma for ITER
  - a. H-mode with ELMs
- 2. Power handling first?


swiss

PLASMA


- a. Negative triangularity (NT) in L-mode plasma
- No ELMs, reduced core/boundary plasma turbulence, mitigated heat flux, but narrow SOL width (with respect to L-mode PT)
- 3. Recent work with GBS negative/positive triangularity simulations showed
  - a. Reduced edge plasma turbulence in NT plasma
    - Smaller power decay length



#### Heat flux loaded on TCV outer target



#### **EPFL** Validation of theory-based scaling law for SOL-width

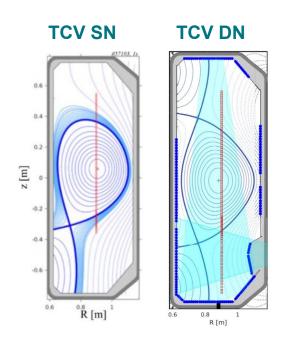


**Extrapolation to larger machines** 

| Parameter                         | ITER               | DTT                 | SPARC               | JT-60SA             |
|-----------------------------------|--------------------|---------------------|---------------------|---------------------|
| $R_0$ [m]                         | 6.2                | 2.1                 | 1.85                | 2.96                |
| $a  [\mathrm{m}]$                 | 2                  | 0.6                 | 0.57                | 1.18                |
| q                                 | 2                  | 3                   | 3                   | 3                   |
| $\kappa$                          | 1.85               | 1.7                 | 1.97                | 1.95                |
| $\delta$                          | 0.49               | 0.3                 | 0.54                | 0.53                |
| $\bar{n}_e \ [\mathrm{m}^{-3}]$   | $4 \times 10^{19}$ | $1.8 	imes 10^{20}$ | $3.1 	imes 10^{20}$ | $6.3 	imes 10^{19}$ |
| $B_T$ [T]                         | 5.3                | 6                   | 12.2                | 2.3                 |
| $P_{\rm SOL}$ [MW]                | 18                 | 15                  | 29                  | 10                  |
| $\lambda_{q,PT} \text{ [mm]}$     | $\sim 3.7$         | $\sim 2.7$          | $\sim 2.3$          | $\sim 7.1$          |
| $\lambda_{q,NT} \; [\mathrm{mm}]$ | $\sim 2.2$         | $\sim 1.8$          | $\sim 1$            | $\sim 3.3$          |

Power fall-off length extrapolation of future tokamaks for NT/PT L-mode The values of  $\lambda_{q,\text{NT}}$  are computed using  $-\delta$  in the scaling law.

AUG data by D. Silvagni


SWISS PLASMA CENTER

- → Successful comparison with different tokamaks for L-mode plasma
- → In L-mode, pressure gradient length Lp in the SOL is the same as in the edge
  - -> important for the L-H transition

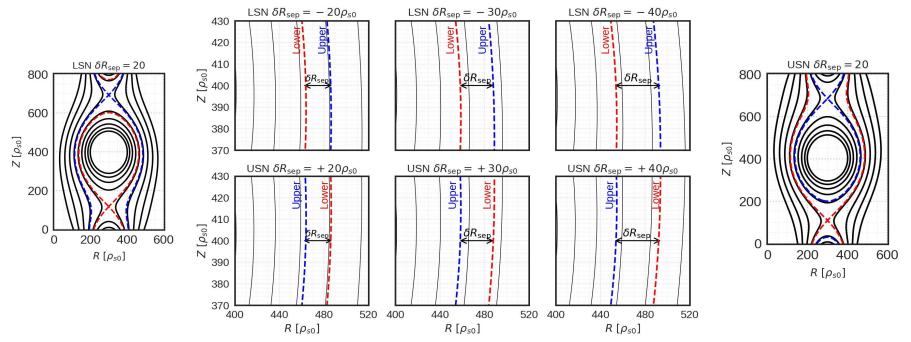
#### **EPFL** Double-Null (DN) configuration, an alternative to <sup>10</sup> Single-Null (SN)

- 1. The DN configuration is of particular interest
  - a. Four strike points to spread the heat load
  - b. Two X-points for large radiative losses
  - c. Quiescent high-field side to place antennas
  - d. Alternative to the detached SN H-mode for ITER
  - e. Implemented in DIII-D, TCV, MAST-U tokamaks

2. Investigation of the plasma dynamics in the boundary of DN tokamak configurations using GBS

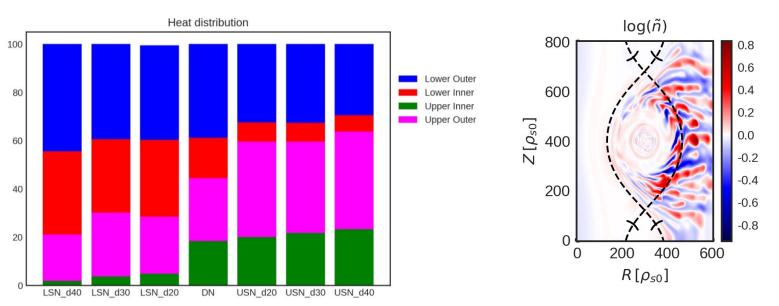





#### **EPFL** Balanced / unbalanced DN configurations, effect <sup>11</sup> of magnetic balance

The up/down asymmetry controls heat exhaust **Balanced DN** LSN  $\delta R_{sep} = 20$ USN  $\delta R_{sep} = 20$ USN  $\delta R_{sep} = 20$ 800 800 800 420 600 600 600 DRser  $Z \left[ \rho_{s0} \right]$  $Z \left[ \rho_{s0} \right]$ 400  $Z \left[ \rho_{s0} \right]$ 400 400 400 380 200 200 200 400 440 480 520 0 0 C 200 400 200 400 600 600 0 200 400 0 600 0  $R[\rho_{s0}]$  $R[\rho_{s0}]$  $R[\rho_{s0}]$ Lower Single Null **Balanced Double Null Upper Single Null** (LSN) (USN) (DN)

SWISS PLASMA CENTER

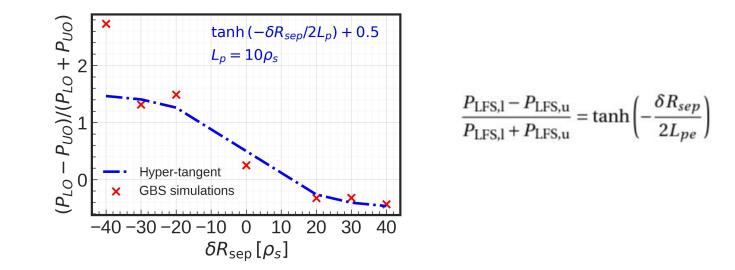

## **EPFL** Balanced / unbalanced DN configurations, effect <sup>12</sup> of magnetic balance

The up/down asymmetry controls heat exhaust





## **EPFL** Heat asymmetry over four divertor legs




- → Heat asymmetry due to magnetic geometries
- → More than 60-70% heat on outer targets

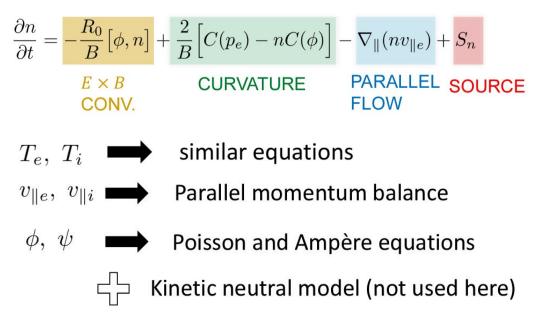
SWISS PLASMA CENTER

- → LSN\_d40 -> 80% lower region / USN\_d40 -> 60% upper region
- → Favourable magnetic field -> ∇B-drift downwards

#### **EPFL** Heat asymmetry over four divertor legs



- 1. Heat asymmetry as a function of 'dRsep'
- 2. Empirical scaling law gives the logistic function (hyper tangent)
- 3. Analytical scaling law? mechanisms? (on-going)




#### **Back-up Slides**



#### **EPFL GBS** model

1. Collisional plasma in edge => Drift-reduced Braginskii equations M. Giacomin (2022)



