

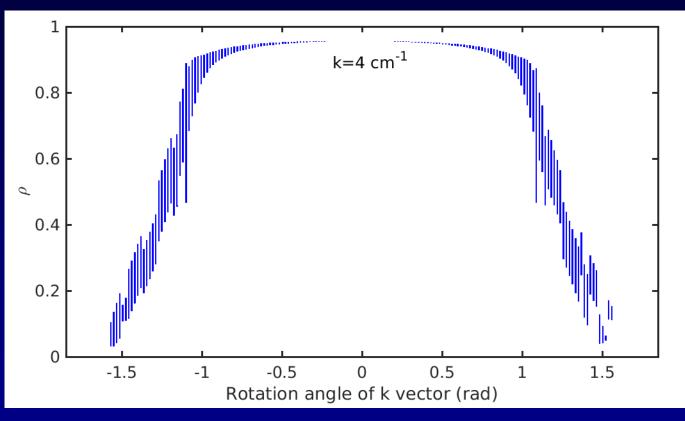
Tangential phase-contrast imaging diagnostic for JT-60SA

S. Coda¹, K. Tanaka², A. lantchenko¹

¹EPFL-SPC, ²NIFS

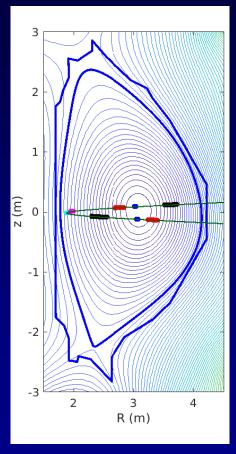
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

EPFL Phase-contrast imaging on JT-60SA


- Will provide localized density fluctuation measurements across the minor radius and in all plasma regimes
 Δn/n~10⁻⁵ 0.06<kp_i<12 (ITG/TEM/ETG)
 - high spatial resolution in the center and at the edge (very favorable configuration on JT-60SA)
- First real opportunity to study turbulence and turbulent transport, and validate models, in a reactor-grade device
- Gyrokinetic modelling support proposed in parallel, with comparisons mediated by a synthetic diagnostic (ongoing GENE work)
- Europe/NIFS collaboration, with Japanese funding (JSPS) already secured

S. Coda et al, Nucl. Fusion **61**, 106022 (2021), DOI:10.1088/1741-4326/ac2081

Radial localization



A rotating filter allows sampling the entire profile vs time within a shot

EPFL Localization on the flux surface

Plasma

Center

- While well-localized in ρ , at midradius the measurement picks up signal from both the HFS and LFS
- HFS and LFS can be resolved separately by doubling the detection system (splitting the transmitted beam to create two separate images)

EPFL

Hardware layout

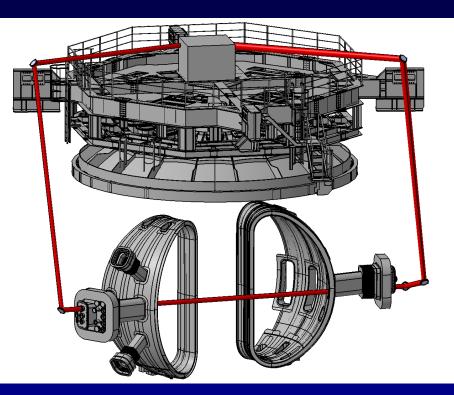
- Beam generation

 CO₂ laser of ~60-100 W power
 Beam expansion by telescopic arrangement
 Relay mirrors all off-vessel (max 32-cm diameter)
- Vacuum interfaces
 - ZnSe windows
- Beam collection

 Relay mirrors all off-vessel (max 45-cm diameter)
 Reflective-refractive focusing and imaging system: must be close to vessel since scattered components diverge rapidly

EPFL

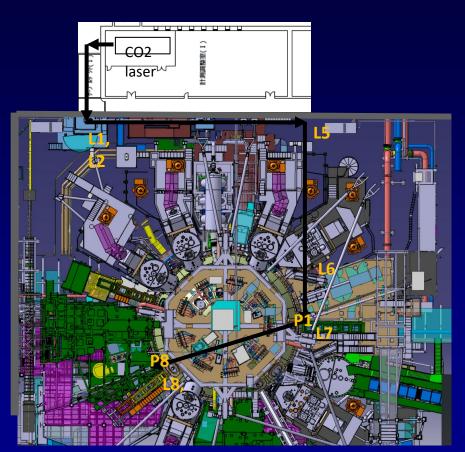
Hardware layout



- Neutron + gamma shielding, fire-safety beam shielding planned
- Automated LN₂ cooling included in design
- Mechanical vibrations are **not** a cause for concern. DIII-D and TCV have optics mounted on vessel and feedback focusing system counteracts vibrations very effectively

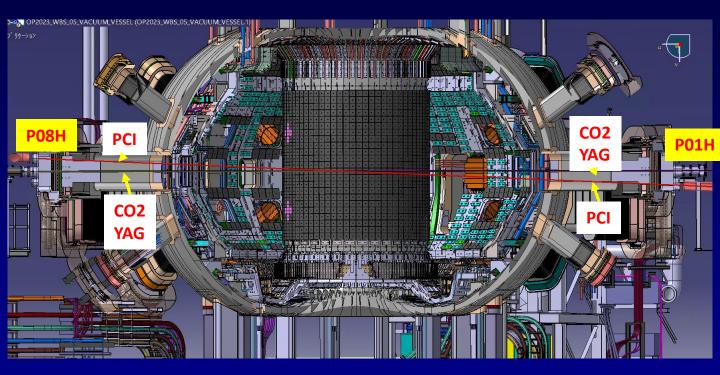
- Based on assumption that upper stage could be used
- Design essentially completed in early 2021

First design


Swiss Plasma

Center

2021: updated layout


- New QST
 preference is to
 avoid upper stage,
 and to keep laser
 system outside
 torus hall for
 easier
 maintenance
- Data acquisition in basement: reduced radiation environment

Swiss Plasma

Center

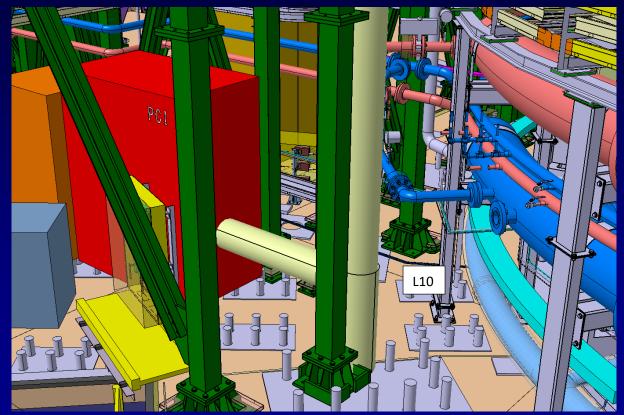
Swiss Plasma

Center

q

- EPFL-SPC has proposed several alternatives for each segment of the optical path
 - e.g. this example to shorten the path and minimize the number of optics

- QST has opted for a more conservative design, hugging the walls as much as possible, to avoid conflicts with cranes and other structures
- Longer path but no major concerns
- Path is now being optimized and finalized and final approval from QST will be sought shortly



Plasma

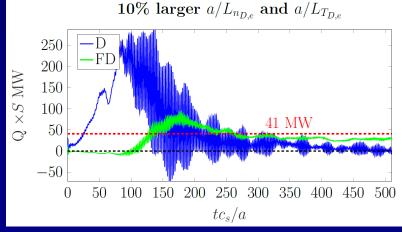
Center

Detection box

Swiss Plasma

Center

EPFL Gyrokinetic simulations



- Ongoing, first very complex GENE nonlinear flux-tube simulation of high-β (DND) scenario (A. lantchenko)
 - Gradients in the nominal scenario are too small to match the heat flux
 - Difficult navigation to avoid non-zonal transition and high-amplitude oscillation caused by fast ions
 - Synthetic diagnostic developed for TPCI (paper submitted)
 - Lengthy convergence studies approaching the end
 ⇒ publication to be submitted soon

Gyrokinetic simulations

- Ongoing, first very complex GENE nonlinear flux-tube simulation of high-β (DND) scenario (A. lantchenko)
 - Gradients in the nominal scenario are too small to match the heat flux
 - Difficult navigation to avoid non-zonal transition and high-amplitude oscillation caused by fast ions
 - Synthetic diagnostic developed for TPCI (paper submitted)
 - Lengthy convergence studies approaching the end
 ⇒ publication to be submitted soon

Plasma

Center

Gyrokinetic simulations

- Ongoing, first very complex GENE nonlinear flux-tube simulation of high-β (DND) scenario (A. lantchenko)
 - Gradients in the nominal scenario are too small to match the heat flux
 - Difficult navigation to avoid non-zonal transition and high-amplitude oscillation caused by fast ions
 - Synthetic diagnostic developed for TPCI (paper submitted)
 - Lengthy convergence studies approaching the end
 ⇒ publication to be submitted soon
- Equivalent study of scenario 2 (full Ip inductive SND) started (S. Mazzi, to be continued by other SPC personnel in view of completion in 2023)

EPFL Current status and planning

- Detailed mechanical and optical design (including all mirror boxes, supports, tubing, etc.) to be completed (2022) after final agreement on optical path
- Complete costing to be delivered along with design
 - Budget sharing envisioned between NIFS and Euratom
 - Procurements have begun on the NIFS side (LN2 filling station)
 - NIFS also proposing reuse of LHD equipment (detectors, etc.)
 - Euratom share of hardware budget estimated at 250 k€
- All procurements can start in 2023, and installation would be *possible* in 2024
- Hiring of dedicated staff will be required
 - a postdoc and a graduate student are envisioned
 - <u>construction can be accelerated if needed</u>

Plasma

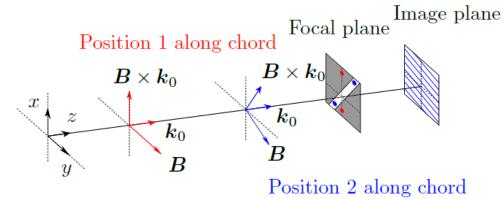
Center

16

ADDITIONAL SLIDES

S. Coda, 9th WPSA Planning Meeting, 08.09.2022

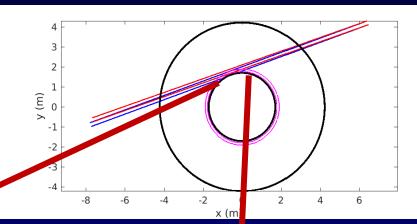
Principles of PCI

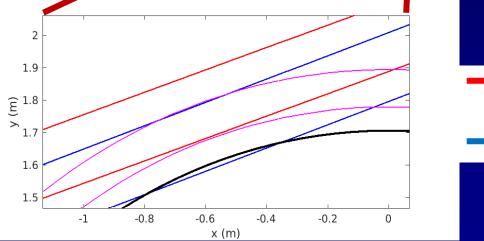


- PCI is an internal-reference interferometer: measures lineintegrated density but only by manipulating and recombining beam components
- It is more sensitive than an interferometer
 (∫δn dl~10¹⁴ m⁻²) but cannot measure *absolute* phase shift
 (long wavelength cutoff ≈ size of beam)
- An image is created across the beam, and spatial resolution is limited only by the number of detector elements
- Localization *along* the beam is achieved in a tangential-launch geometry by selecting the direction of the measured wave vector (by optical filtering)

EPFL How is spatial localization achieved?

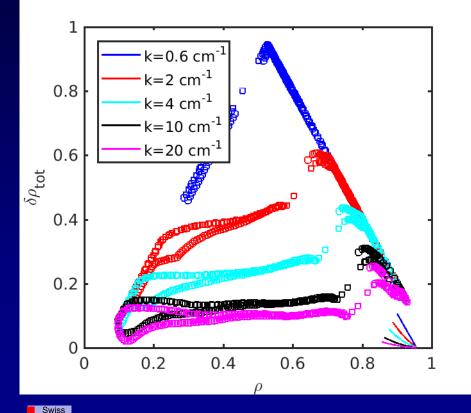
- At every location, measurement selects wave vectors that are perpendicular to the magnetic field (since k_{par}~0) and to the laser beam (else canceled by integration), i.e.
 k ∝ Bxk₀
- Selecting the direction of k by spatial filtering, we select a spatial location


 In JT-60SA, best spatial localization is achieved near the magnetic axis and in the pedestal (on the HFS)



PCI port choice

The inclined option is **needed** to avoid running into inner wall

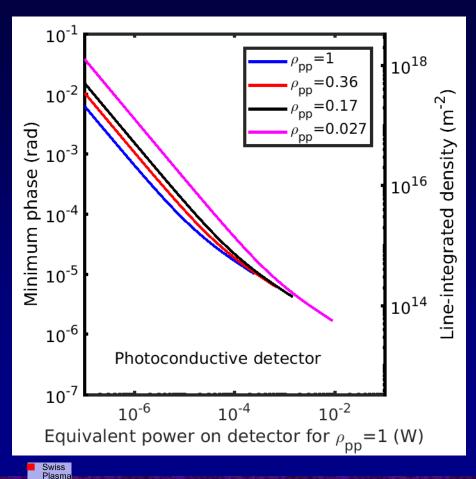


Localization improves with increasing k

k direction: predominantly k_{ρ} in center, k_{ρ} and k_{θ} in two separate edge measurements

Plasma

Center

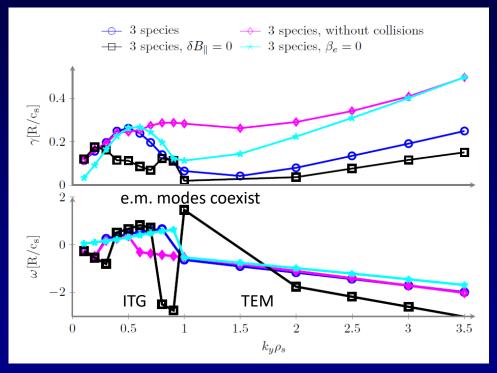


22

Center

Sensitivity is crucial

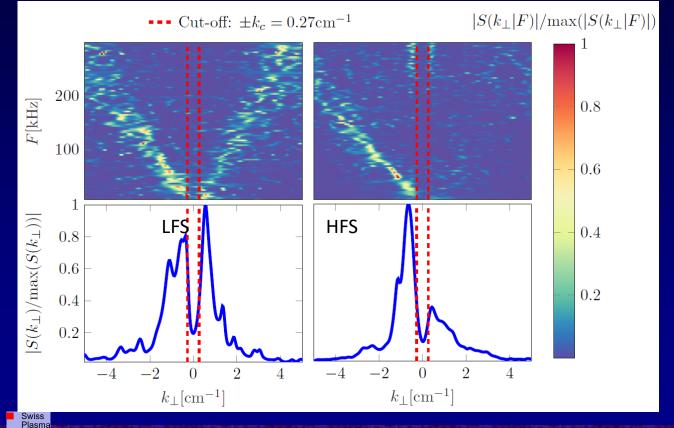
Depending on integration length, densities as low as 10¹⁵ m⁻³ can be measured


Tangential Phase Contrast Imaging

Gyrokinetic modelling (GENE)

Linear analysis shows importance of retaining full physics, including impurities, collisions, e.m. effects

ETG appear minor in this scenario



A. lantchenko et al, paper in preparation

Gyrokinetic modelling (GENE)

Center