V Kiptily et al

On a scientific case for gamma-ray diagnostics at JT-60SA

The work is carried out in close collaboration with ENEA (M. Nocente et al)

1

25

25

65

35

10

65

6

10

9th WPSA Planning Meeting, Budapest, 5th – 9th September 2022

Contract for the Operation of the JET Facilities Co-Funded by Euratom his work was funded by the RCUK Energy Programme [Grant number EP/P012450/1]

Gamma-ray spectrometers on JET

×

UK Atomic Energy Authority

Vertical spectrometers

Fast-ion studies on JET:

γ -ray spectrometry

×

Fast-ion studies on JET:

Vertical camera

UK Atomic Energy Authority

Tomographic reconstructions of γ -ray profiles measured in different q-profile phases of the plasma discharge

V Kiptily et al | 9th WPSA Planning Meeting | Budapest | 5th - 9th September 2022 |

2.0

2.5

3.0

B (m)

3.5

Fast-ion studies on JET:

14 15 16

Kiptily V et al 2013 Plasma and Fusion Research: Overview Articles, 8 2502071

Counts/s

5000

4500

4000

14.2

14.6

Detector box

Detectors:

Vertical camera

141111111

CCFE CULHAM CENTRES FUSION ENERGYS

15.0

Time (s)

Channel 14

Channel 15

Channel 16

Channel 17

15.4

---- Channel 18

×

UK Atomic

Runaways studies on JET:

Start-up runaways

- HXR spectra recorded during start-up of discharges
- RE-beam in the plasmas generated at the X-point creation and continues up to NBI heating

 RE energy distribution reconstructed from recorded HXR spectra based on a electron-impurity interaction model

XXX

UK Atomic Energy Authority

Runaways studies on JET:

Disruption mitigation experiments

CCFE

20

×

Initial Research Phases Priorities & γ-ray diagnostic duty (I)

UK Atomic Energy Authority

Runaway electrons studies

- Current ramp-up scenario development up to full-current operation (H.I.1. Stable operation at high current)
- Basic disruption studies (H.I.2. ITER risk mitigation for non-activated phase)
- Runaway electron study at high current (H.II.3. ITER risk mitigation)
- Disruption avoidance (H.II.3. ITER risk mitigation)

JT-60SA Research Plan, Version 4.0, 2018

Initial Research Phases Priorities & γ-ray diagnostic duty (II)

UK Atomic Energy Authority

Confined Fast Ion studies

- L-H transition studies in hydrogen / helium plasmas (H.I.2. ITER risk mitigation for non-activated phase)
- Energetic particle driven mode studies (H.II.1. ITER scenario development)
- Energetic particle effects on transport and confinement (H.II.1.)
- Fast ion effects on turbulence and transport (H.II.2. Steady-state high beta scenario development)
- Fast particle driven modes instability (H.II.2.)
- Compatibility of RMP with fast ion confinement (H.II.3. ITER risk mitigation)
- Burning plasma simulation experiment (H.II.3.)

JT-60SA Research Plan, Version 4.0, 2018

Integrated & Extended Research Phases priorities & γ-ray diagnostic duty (III)

Confined Fast Ion studies

- Fast ions & fusion products confinement and MHD effects in the high-β steady-state operation with high-power long-pulse discharges
 - o in the carbon JT-60SA
 - o W-coated carbon first wall and divertor

JT-60SA Research Plan, Version 4.0, 2018

Gamma-rays for fast-ion studies (I)

Hydrogen N-NBI & boron / carbon impurities

Analysis of γ -ray spectra => beam deposition, slowing down, fast-ion distribution

×

EXFOR (,G)2-HE-3 A1266.002

ENDF/B-VIII.0

Gamma-rays for fast-ion studies (II)

V Kiptily et al | 9th WPSA Planning Meeting | Budapest | 5th – 9th September 2022 |

Deuterium N-NBI in *H*-plasmas *Hydrogen* N-NBI in *D*-plasmas

×

Gamma-rays for fast-ion studies (III)

Deuterium N-NBI in high-performance **D**-plasmas

×

UK Atomic Energy Authority

Gamma-rays for fast-ion studies (IV)

UK Atomic Energy Authority

Triton burn-up in high-performance *D*-plasmas

A preliminary work plan 2022

• Using experience of JET γ -ray diagnostics, make assessments of

- HXR generation by runaway electron beams during
 - start-up / rump-up
 - disruptions
- \circ nuclear reaction rates and most useful/intensive γ -ray emissions to study of
 - hydrogen N-NB / protons
 - deuteron N-NB
 - DD fusion tritons
- Report on the scientific case for γ -ray diagnostics on JT-60SA

UK Atomic Energy Authority

Thank you for your attention

