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* Motivation and introduction
e Equilibrium and ideal kink stability
e RWM in drift-kinetic model

* Precession and bounce resonance damping

* Coupling linear kinetic plasma response model with 3D
external structures
* Application of CarMa-D to JT-60SA

e Qutlook
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Motivation @)

One of the main missions of JT-60SA is 6 AT AL FR K, R A D LR
demonstrating and studying steady-state high 5 ////////////////////Avg DEMO | 3
B operation. RWM stabilization is necessary for " Target for JT-60SA 7, reactors] |
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RWM feedback control 1 Experiments Z (ic;g?%t::f;e) -
« Complementary to active control, it is 00 S0 20 30 00 V400 V1000
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required to understand the mode interaction
with plasma rotation and particles: Kinetic-
RWM physics

Modelling the synergy between these passive and
active stabilization channels is essential for a
realistic description of the phenomenon in
advanced scenarios

Physics and models are relevant for all
scenarios aiming at high B (# 4.*, 5)
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Modeling workflow (®
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B=1.7T
 Lower input power for flat-top By = 3.6

Equilibrium is solved with CHEASE fixed boundary
code, for high mesh resolution inside the plasma

Linear stability is studied with MARS-F using fluid
damping models for RWMs and with MARS-K using

the self-consistent drift-kinetic formulation
[L. Pigatto et al. Nucl. Fusion 59 (2019) 106028]

Codes integrated in python workflows:

v Equilibrium + stability workflow for low-n core
modes

v' Plasma response workflow for e.g. EFC
applications

v' CarMa coupling workflow for RWM modeling
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Outline

RWM in drift-kinetic model

* Precession and bounce resonance damping
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Improved modeling

n=1,2 ideal RWMs are unstable in the
fluid model

Kinetic damping stabilizes the n=2
mode at both low and fast toroidal
flow, n=1 is unstable

Two resonances for thermal particles:

1 bounce resonance gives a stabilizing
contribution at fast rotation

Fast ions not accounted for (non-trivial
distribution and implementation)

of kinetic-RWM
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Coupling linear kinetic plasma response model with 3D
external structures

* Application of CarMa-D to JT-60SA
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The CarMa-D coupling uses response matrices for fixed

toroidal rotation (on axis — = 8% i.e. relatively fast) E 0.
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CarMa-D application
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Progress in coupling RWM unstable plasma response with
3D conductors
« CarMa code

[Portone, A., et al (2008) Plasma Physics and Controlled Fusion, 50(8), 085004.]

« CarMa-D approach: frequency interpolation

[Bonotto, M., et al (2020) Plasma Physics and Controlled Fusion, 62(4), 045016.]

WA
Consistency check with MARS-K with axisymmetric ==
wall in stabilizing plate position ~_
Both arbitrary virtual magnetic sensors and real 4 j
layout of RWM control sensors implemented | |
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CarMa-D application ‘@)
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(m,n)=(2,1) pattern of the most unstable
mode on the axi-symmetric wall
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Summary & outlook
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Revised plasma response calculations with smoother input profiles and
optimized mesh

n=2 found to be stabilized in the explored rotation/beta range
CarMa-D coupling with axisymmetric wall

AN

Fully 3D passives are being considered (VV and SP)
+ Can be numerically challenging

Investigating behavior of unstable mode with changing structures
+ Astep back to static CarMa could be useful to check robustness

Cross-check MARS-K and CarMa results with varying wall resistivity
Implementation of state-space model in dynamic simulator

vy Vv VY

4

% The workflow is now flexible enough to make switching scenarios relatively easy
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MARS-K formulation ®)

\=Z
2D Equilibrium Experimental profiles Model parameters
Equilibrium field, B lon & Electron temp., T, T, X-point smoothing
Equilibrium current, J Electron density, n Resistivity model (if)
INPUTS I . c . .
Equilibrium pressure, P Toroidal plasma rotation, V,, Parallel sound wave damping
Plasma boundary coefficient, Ki|
y+ in2)é= v+ (§- VRV
(y + inQ)v Major radius, R
PROCESS =—-V-p+VxQ XB+VXB XQ Toroidal angle, ®
(-K) —p[2QVZ x v+ (v - VR)R?VP| — V- (p&)R?Q?VZ X VD Plasma rot. Freq., 2
y+ n2)Q=VxwxB)+(Q -VRR?*Vd Parallel & perp. kinetic pressure
P = p||BB +p, (I — BB) Liu, Y., et al, 2000, Physics of Plasmas (1994-present), vol. 7, no. 9, pp. 3681-3690. COMP., P|| P
Liu, Y., et al, 2014, Physics of Plasmas (1994-present), vol. 21, no. 5, pp. 056105.
Liu, Y., at al, 2008, Physics of Plasmas (1994-present), vol. 15, no. 11, pp. 112503.
Perturbed quantities:
Plasma displacement, &
OUTPUTS Perturbed velocity, v Components of the perturbed potential energy,
Perturbed magnetic field, Q kinetic in particular, §W,,

Perturbed current, j
Perturbed pressure tensor, p
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3D structures

// Accurate 3D geometry of:

« Stabilizing plates
« Vacuum Vessel (with port extensions)
« EFCC and RWMCC
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Feedback modeling toolbox ©

Flight simulator developed for JT-60SA, based on CarMa (= MARS-F +
CARIDDI) code, allows to simulate the time evolution of the closed-loop

system
PID v— RWMC Magnetic
Bore™™ .~ |controller X sensors
O o8 | 1F = Plasma || 1gxg
Multi-n RWM feedback Vel s
Eigenvalue study = | = 5
Time simulations: latency, o i "
detection thresholds e BL
Kinetic damping through CarMa-D Cleaning 8"

state-space model B,
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Tools for CarMa workflow
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Main | Phus. Quant it ies | Setup Coils | ESC | CarMa FC | @ Eq u i I i b ri um <-> C H EAS E

CarHa Forward Coupling

MY coupling surface = |51 il
Coupling surface position r/a = 1,0300323

[ Export results for post-processing il

M Subnit jobs to sususs L d MARS_F tem plates With

Toroidal mods n, (RNTOR» = |-1 il

.
Fol. harmonic 1 (ML) = [-9 D f bI t t p
Pol, harmonic 2 (M2} = 45 il eW Va rla eS 0 Se u
Initial guess for eig. (TALPHAL) = |0.001 i)
Normalized wsll time (TALW) = 52900,0 il
KWall position in grid (IWALLY = 99 o .
O S — . * Parallel execution of
RFA run] VAC run]
; plasma response runs
IFEED = 3 d
ISENS = [[3. 51 ? f II b d y
FEEDI = [0 q Or a Oun ar

Run FC workflou

conditions

Run checks

B]

Execution of OMFIT workflow... ez B s

OMFIT command box 49 L4 Post p ro CeSS| n g

OMFITL 'MARS ' 1 *SCRIPTS ' 1L ' CarHaD_FC' I[ 'CarMa_coupling D']
OMFITL 'MARS ' I[ "SCRIPTS' I[ 'CarMaD_FC'I[ 'CarMa_SRFA']
OMFITL'MARS ' 1L 'SCRIPTS' 1L 'CarMal_FC ' 1L 'MARSrun_CarMa_coupling ']
Abort all
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