9th WPSA PPM 8th of September 2022

Modelling of C wall Scenario 2 with SOLPS-ITER

<u>P. Chmielewski¹, M. Jabłczyńska¹, G. Rubino², L. Balbinot², K. Gałązka^{1,3}, G. Falchetto³, the WPSA team et al.</u>

¹ Institute of Plasma Physics and Laser, Microfusion, Hery 23 Street, 01-497 Warsaw, Poland

² ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, via E. Fermi 45, 00044, Frascati, Italy

³ CEA Cadarache 13108 Saint Paul-Lez-Durance Cedex, France

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Modelling of Scenario 2

- Carbon divertor targets
- Deuterium plasma with argon impurity
- Input power equal to 21 MW (auxiliary heating in scn#2: 41 MW)
- Inner-core boundary electron density equal to 3x10¹⁹ m⁻³
- Gas puffing:
 - Deuterium gas puff (outer valve)
 - Ar seeding above the outer divertor
- The particle density diffusivity and electron heat diffusivity have been developed on the basis of the JET discharges (L. Balbinot)
- Simulations with SOLPS-ITER (multifluid B2 code coupled with Eirene MC code)

P. Chmielewski | 9th WPSA PPM | 8th September 2022| Page 2/5

- Modelling of Scenario 2Carbon divertor targets
- Deuterium plasma with argon impurity
- Input power equal to 21 MW (auxiliary heating in scn#2: 41 MW)
- Inner-core boundary electron density equal to 3x10¹⁹ m⁻³
- Gas puffing:
 - Deuterium gas puff (outer valve)
 - Ar seeding above the outer divertor
- The particle density diffusivity and electron heat diffusivity have been developed on the basis of the JET discharges (L. Balbinot)
- Simulations with SOLPS-ITER (multifluid B2 code coupled with Eirene MC code)

P. Chmielewski | 9th WPSA PPM | 8th September 2022| Page 2/5

Refined B2 and Eirene num, mesh

Activities in 2022

- New numerical mesh with increased resolution (100x36 cells) have been created
- Numerical model assumption have been corrected
 - new radial transport profile
 - the inner core boundary condition have been changed to constant particle flux condition
- Ongoing simulations with new model conditions for different values of the separatrix density (different pumping) and then the argon concentration (up to the end of the year)

Important issue

 Considering of available pumping speed range for main plasma and impurities

Next activities

Investigations of the argon impurity impact on:

- the heat load mitigation,
- efficiency of the argon and carbon radiation,
- the carbon sputtering
- Scans for different argon concentrations and for different values of the separatrix density will be performed
- Limited investigations of the plasma detachment in JT-60SA for various argon concentrations will be done
- Power scan is under consideration

Thank you very much for attention!