

Initial Research Phase II scenario#2 simulations with SOLEDGE2D/SOLEDGE3X-EIRENE

K. Gałązka^{1,2}, L. Balbinot³, G. Ciraolo¹, G. Falchetto¹ and P. Innocente⁴

CEA, Cadarache, FRANCE
IPPiLM, Warszawa, POLAND
Università della Tuscia, Viterbo, ITALY
Consorzio RFX, Padova, ITALY

Aims of edge/SOL modelling

- Assess the heat loads on the wall and targets (check also the neutrals loads)
- Predict the onset of detachment
- Propose a seeding strategy to mitigate heat loads
- Contribute to the design studies of divertor / wall diagnostics (ENH session tomorrow)

SA-SE.CM.M.03-
T003D1- Sensitivity study of low n /current drive scenarios with C divertor, with
SOLEDGE3X edge transport code, including impurity seeding impact.D2 - Assessment of JT-60SA Initial research phase II scenario 2 via edge
modelling integrated with core conditions.

No active cooling in the Initial Research Phase - power exhaust mitigation is crucial

Requirements:

- Reliable magnetic equilibrium (including divertor legs) and wall data (chamber + subdivertor)
- Machine Data : puffing valve positions and available gases, auxiliary heating power
- Power and particle flux through the inner simulation boundary
- Reliable prediction of transport based on
 - 1. Experimental findings and previous simulations from C-wall JET
 - 2. Estimations from core and pedestal modelling
 - 3. Existing scalings, 2PM

Scenario #2 constraints from the SARP / PID

- D plasma
- Uncooled C wall
- Maximum heating power: 19/26.5/33 MW (from PID: 27 MW)
- Core average density: 5.6×10¹⁹ m⁻³

Estimation of power loads for the reduced power case:

- Expected input power to SOL: 20-23 MW
- H-mode operation (P_{SOL} > 10 MW)
- SOL width < 1.5 mm

Scenario #2 constraints from the SARP / PID

- D plasma
- Uncooled C wall
- Maximum heating power: 19/26.5/33 MW (from PID: 27 MW)
- Core average density: 5.6×10¹⁹ m⁻³

Estimation of power loads for the reduced power case:

- Expected input power to SOL: 20-23 MW
- H-mode operation (P_{SOL} > 10 MW)
- SOL width < 1.5 mm

(SUBD)

Cryopump

Divertor Cassette

The grid

SUBD: the same, but with subdivertor

The grid incorporates the secondary X-point and the volume at the top of the chamber.

Adjusted the details of the wall.

Equilibrium from the IDM repository.

Gas puff position according to documentation in SARP.

Modeling parameters

Auxiliary input power scan: [15, 17.5, 20. 22.5, 25] MW (50/50 electrons/ions) Particle sources: $S_{core} = 1.0 \times 10^{21}/s$, $\Gamma_D = 1.0 \times 10^{21} \text{ s}^{-1}$, pump albedo 0.95 Electron density at the seaparatrix should be ~ 2×10¹⁹ m⁻³

Transport coefficient profiles (for the H-mode)

Modeling parameters

Auxiliary input power scan: [15, 17.5, 20. 22.5, 25, 27.5, 30] MW (40/60 electrons/ions) Particle sources: $S_{core} = 1.0 \times 10^{21}/s$, $\Gamma_D = 1.0 \times 10^{21} s^{-1}$, pump albedo 0.95/pumping speed 100m³/s Electron density at the seaparatrix should be ~ 2×10¹⁹ m⁻³ [impossible to achieve without adjustment of Γ_D , which is already relatively low]

Transport coefficient profiles (for the H-mode) - modified D in the barrier for more narrow SOL,

D ^{barrier} =0.03	D	D+C	D+C+Ar
STD	ОК	-	-
SUBD	OK	running	running

Each cell represents a series of cases within power range [15, 30]

* K. Galazka et al. "SOL modelling of the JT-60SA tokamak initial operational scenario using SOLEDGE3X-EIRENE code" (contributed poster)

Publication plan

EPS conference:

• K. Galazka et al. "SOL modelling of the JT-60SA tokamak initial operational scenario using SOLEDGE3X-EIRENE code" (contributed poster)

AAPPS-DPP2022 conference:

 K. Galazka et al. "Particle transport and heat loads in JT-60SA studied by SOLEDGE-EIRENE" (invited talk)

Backup slides

	D	С	Ar
Recycling: R	1.0	0.0-0.1	1.0
Pumping:	0.95	0.0-0.1	0.78

Pumping speed? Input power sharing between e and i? Magnetic configuration – now: corner-corner

Details of diffusion profile – comparision

 $P_{NBI} = 10n + (10+10)p MW$

Detail of diffusion profile

