

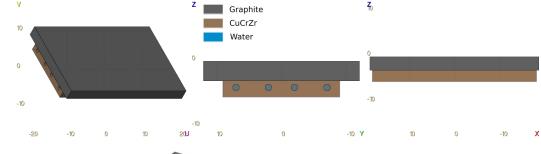
Modelling of the interaction of RE with PFC

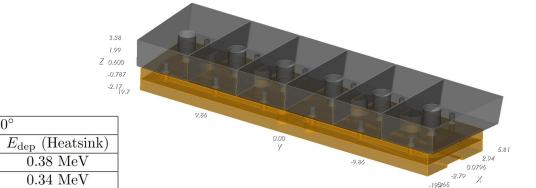
J. Caloud^{1,2}, A. Casolari¹, E. Macusova^{1,2}

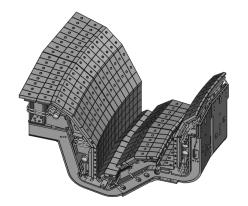
¹Institute of Plasma Physics of the CAS, Prague, Czech Republic ²FNSPE, Czech Technical University in Prague, Czech Republic

2022 Plan

- Workflow of particle tracing codes coupled to FLUKA
 - spatial distribution and energy levels of RE heat loads on the JT-60SA PFC
- Simulations with 2 particle tracing codes for selected scenarios scans over RE energy and pitch angles
 - ORBIT
 - CODE Full orbit particle tracing code developed at COMPASS
- Identification of areas where REs terminate with different energy and pitch angle
- FLUKA/FluDAG simulations with inputs from the particle codes deposited energy density profiles in simplified and full CAD geometry

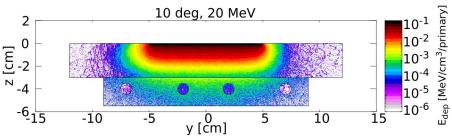

07/09/2022





FluDAG progress

- RE Energy deposition in divertor CAD geometry by DAGMC [1]
- Validation of results with FLUKA simulations in simplified geometry
 - Energy deposition in the heatsink 2 orders of magnitude lower
- Possible to import results to a FEM solver (ANSYS) for modelling of temperature distribution - tested at COMPASS
- Requirements CAD models of other PFC (inner and outer limiters)

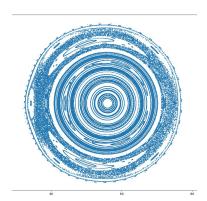

		DIV (CAD)	18.69	MeV
	FluDAG 10	deg, 20 MeV		
4			10-1	2
3			10 ⁻² È	_ 0
2 - -		-	10 ⁻³ %c	E. J
<u>E</u> 1			/cu	[cm] z
N 0	-		10 ⁻⁴ ≥	'` -4
-1	_	_	10 ⁻⁵ ਲੂੰ	-6

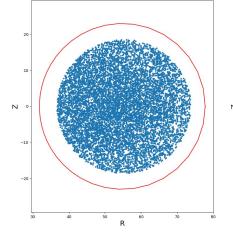
y [cm]

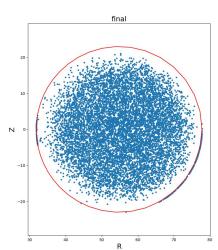
DIV (simplified)

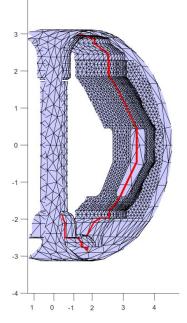
 $E_{\rm RE} = 20 \text{ MeV}, \ \alpha = 10^{\circ}$ $E_{\rm dep} \text{ (Graphite)} \mid E_{\rm dep}$

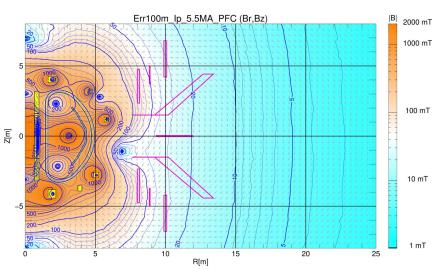
18.77 MeV




[1] A. Davis et al, Nucl. Instrum. Methods. Phys. Res. 915 (2019) 65-74




RE Particle tracing


- RE tracing in 3D perturbed magnetic field by ORBIT [1] and CODE [2]
- Output: spatial and pitch-angle distribution of REs as a function of electron energy
- Spatial distribution of RE impact to be used for FLUKA simulations
- Requirements:
 - Magnetic equilibrium
 - Estimated guess on spectrum and amplitude of MHD perturbations
 - Estimates on the RE energy and pitch angle ranges

^[1] R.B. White et al, Phys. Fluids 27.10 (1984) 2455-2469

^[2] M. Hron et al, Nucl. Fusion 62 (2022) 042021