

MHD stability of JT-60SA Initial Scenarios

R. Coelho

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation and goals

- Investigate MHD stability of Initial research phase scenarios of JT-60SA
 - JT-60SA initial research phase I and II, in H and D, with reduced power and C-PFC are "approaching"
 - Despite the "reduced power", it entails already 33 MW (N-NB of 10 MW, P-NB of 20 MW, ECRF of 3 MW). The high heating power and high plasma current will enable access to the ITER and DEMO regimes of β_N , f_{BS} , $\rho^* v^*$ and electron heating ratio !
 - It is relevant to characterize the *hierarchy* of potentially hazardous *MHD modes* (from internal kink in the deep core up to peelingballooning at the pedestal) i.e. which modes dominate ?
- Use routinely MHD stability workflow for the analysis
 - Provide training on usage

Summarizing Scenarios 2-5

- In *all scenarios* q₀<1 so *ST activity* is already accounted for.
- In all scenarios pedestal pressure and J_{BS} is noticeable → ELM-y plasmas
- Scenarios 2-3 (inductive, highest I_p) have noticeable plasma pedestal pressures/currents \rightarrow PB pedestal dominated $(\gamma \tau_A \sim 0.12 \ for \ scenario2, \ scenario3 \ less \ unstable).$
- Scenario 4 (hybrid, internal ion temperature ITB) is dominated by ideal infernal-ballooning very unstable modes ($\gamma \tau_A \sim 0.2$ at highest ∇p region), PB at $\gamma \tau_A \sim 0.07$
- Scenario 5 also unstable to internal ballooning modes $\gamma \tau_A \sim 0.08$ (for n=30, $n \rightarrow \infty$ might hover ~0.12 though)

Core MHD phenomenology presented at EPS2022

Scenarios used for EPS2022

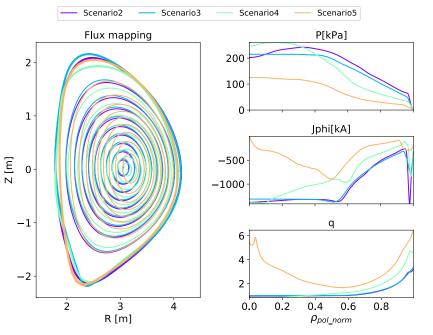
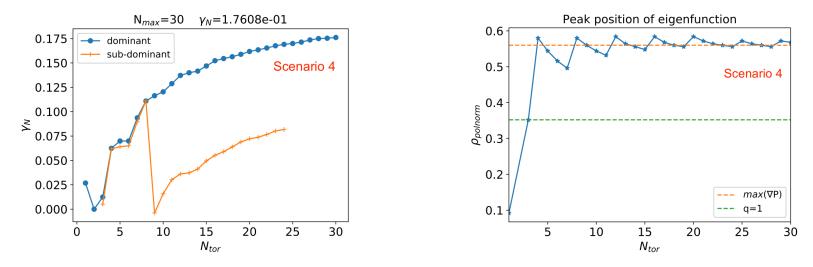


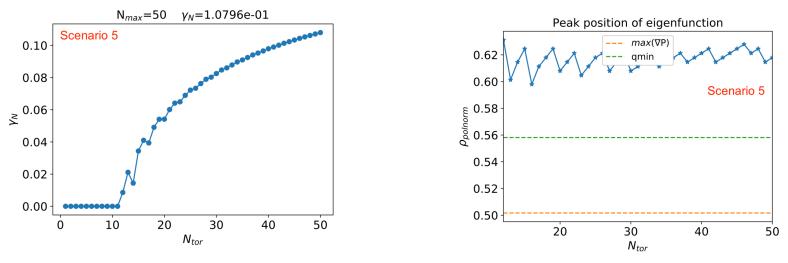
Figure 1 – Plasma cross section and flux surfaces for the 4 operational scenarios (left) and some radial plasma profiles. The radial coordinate is the squared root of the normalized poloidal magnetic flux.

- Fully inductive scenarios at low (Scenario 2) and high (Scenario 3) electron plasma density.
- Hybrid scenario (Scenario 4) and advanced scenario with core magnetic shear reversal (Scenario 5).

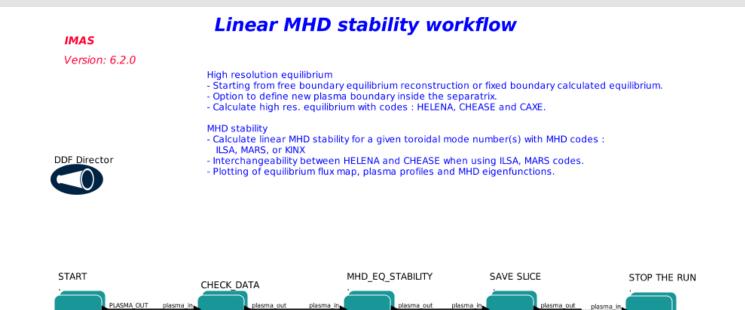
	Scenario 2	Scenario 3			
Ι p / B _τ	5.5MA / 2.25T	5.3MA / 2.05T			
	Scenario 4 (CDBM)	Scenario 5			
Ιρ / Β _τ	3.6MA / 2.28T	2.3MA / 1.72T			


The same data (basic self-consistent equilibrium) is needed for the Initial research phase scenarios !!!

٠


Some highlights on results

Scenario 4 (hybrid-ITB) with clear ideal ballooning unstable character dominating


• Scenario 5 (reversed-q) dominated by ballooning unstable at positive shear

R. Coelho | MHD stability on JT-60SA | September 2022

Toolset to be used

Documentation: <u>https://iterphysicswiki.euro-fusion.org/index.php?title=EQSTABIL_workflow_documentation</u> https://wpcd-workflows.github.io/es.html

- Consolidated workflow for single mode ideal MHD stability (ITM/WPCD)
- Large case basis (JET, AUG, TCV, JT-60SA)
 - <u>Training set developed with ideal/resistive test cases on multiple devices</u>
- Seamless link to the ETS (very similar plasma bundle structure)
- KEPLER → AutoGUI based interface (<u>same as ETS workflow</u>)

AutoGUI based workflow

- Simple interface to set/control/execute the workflow
 - Saved parameter file fully embeds workflow settings + code parameters ensuring subsequent *traceability* & *reproducibility*

mulation Parameters Kepler B	Execution Monitoring
nitialisation Configuration	Post Processing
user_name	g2rcoelh
machine_name	tcv
shot_number	63540
input_run	81
output_run	13
run_work	9999
 time_in	1.0

- Fully <u>multi-device</u> compatible
- <u>Multi-code</u> compatible
- Visualization of results included
- Interactive/batch execution

Simulation Parameter	ers Kepler E	xecution	Monitoring		
Initialisation	figuration P	Post Proce	essing		
Operation Mode	Equilibrium	MHD	Dump		
					- 4 - 1
HREcode			HELENA	<u> </u>	Code Parameters
Visualise_HRE			yes	*	
cut_eq			no	*	
cut_off			0.998		
rcoord			rho pol norm	•	

Python based workflow

- Under testing stage, basic but easily upgradeable
- Also GUI based but can also be executed on the CLI
- Also fully compliant to IMAS
- Includes same "physics actors" as the Kepler version (*ideal/resistive*)
- Embeds as well post-processing plotting options to check the results
- Fully *multi-device* compatible
- <u>Multi-code</u> compatible

X EQST	ABIL			_	X EQST	ABIL			
File					File				
Database	Settings	Equilibrium	Linear MHD	Running Options	Database	Settings	Equilibrium	Linear MHD	Running Optio
tcv	Device				Modify Equ	uilibrium	у —		
g2rco	User elh				Run Equi	librium	у —		
63540	Shot				Run M		n _		
81	Run_in				Num				
	Run_out				Only Plot Ed	quilibrium	у —		
9998							1		
	Time				Only Plo	t MHD	n 💻		
1.0									

Modelling plans

- Obtain the plasma scenarios from JETTO/ETS (preferably in IDSs)
 - Requested in May 2022 → ...
 - Naming convention is relevant (Scenario 2, 4.2 mean something totally different to me...)

- Equilibrium can even come in EQDSK (just make sure shape/boundary + profiles are consistent with machine + scenario constraints)
- Perform the stability scan at *time slices of interest to the "community":*
 - Ramp up, flat-top, pre/post heating transitions, wide low shear regions,...
 - Focus on core modes but pedestal might also be considered though flat top might be pre-set/piloted to marginal stability (?)
 - Ideal/resistive where appropriate.
- Determine MHD limits if required e.g. beta limits (*RWM excluded*) and/or transport barrier assessment/limitations.