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BOUT++ code and objectives of TOKEDGE project

BOUT++ framework as an edge tokamak simulation code [Dudson CPC2009]

« BOUT++ calculates middle-n (O(n)>1) and high-n (O(n)»>1) structure with high accuracy in complex
boundary region in tokamak plasmas

« BOUT++ employs flute-ordering k=0 on Poisson solver for n0 modes calculating flow potential
from vorticity

v Flute-ordering may not be accurate for low-n modes (O(n)~1) especially in diverted geometries

TOKEDGE is a twe three years project to extend BOUT++ framework for tokamak edge simulation
solving interplay between n=0, low-n, middle-n and high-n modes in diverted geometries

= improvement of current-driven ELMs, RMPs, full annular tours edge turbulence simulations, etc...
 FY2020: development of flute-ordering-free Poisson solver for low-n modes [CSC WS 2021}

 FY2021: production run of full annular tokamak edge simulation with circular cross section

 FY2021: preliminary test of full annular tokamak edge simulation with single-null divertor geometry
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&?T BOUT ++ uses dual coordinate system but has problem in n=0 and low-n

BOUT++ calculates middle-» and high-n» mode with high accuracy and cheap cost using both flux surface
coords. (v,0,() and field-aligned coords. (x,y,z) with shifted metrics for tokamaks

coord. transform by 1/4th annular torus defined by (x,),z)

1/4th annular torus domain by (y,6,¢) FFT: 2=¢
. Z2=(C -

field-aligned coords: a=0

R[m] . . R[m] 5.0

Need large poloidal (6) resolution for  Need small parallel (y) resolution for
parallel differencing for large g and n parallel differencing

shift angle for aligning:| [ . ce|| deformation by magnetic shear
o " B.V( o degrades radial (x) differencing
% Differencing in radial (y) direction ~ Jo—r B-V0 < Differencing in parallel (y) dir

= 1D Poisson solver for n in radial . I |
direction with flute-ordering k=0 for | ** Differencing in binormal (z) dir.

calculating flow potential coord. transform by
FET: ¢ =z+a
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Q?T BOUT++ uses dual coordinate system but has problem in n=0 and low-n

BOUT++ calculates middle-» and high-» mode with high accuracy and cheap cost using both flux surface
coords. (v,0,() and field-aligned coords. (x,y,z) with shifted metrics for tokamaks

1/4th annular torus domain by (y,6,¢) Iglgfl)'rd. ’(t:ransform by 1/4th annular torus defined by (x,),z)
. Z=(C ~X
—>

a=0 field-aligned coords:

Flute-ordering k£/=0 may not be valid for n=0 and low-n modes especially in diverted geometries

1.5,

Sk

-1

o] ™=Cannot address to nonlinear tokamak edge simulation selfconsiestently including interplay
between flow (n=0), (low-n) MHD, and turbulence

«¢ Differencing in radial (y) direction o=r B - + Differencing in parallel (y) dir.
= 1D Poisson solver for n in radial o . ,

. . . . -—me *%* Diff | .
direction with flute-ordering k=0 for o « Differencing in binormal (z) dir
calculating flow potential coora. transtorm by

FFT: £ =z+a
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Numerical issue on Poisson solver in BOUT++ : flute ordering on low-n modes

Linearized Poisson solver for n=n" mode vorticity (n.;/nio <O(1)) In Fourier space
U(-,-,n') =V (B Vubl) = Lanitted(Dy, 02,8y, 02,n) 1 (-, -, n') wmmy  D1(:; 57 = Lonitied (g, 0, 0y, Oy, ' )UL(:, 1) 7
0

Poisson solver however cannot be defined as a boundary problem straightforwardly

3

« 1D Poisson solver in flux-surface coordinates for n#0 modes using flute-ordering approximation (dy=0)
[DUdSOn CPCZOOQ] ¢1(w, 9, n/) — L:S—}llifted(8¢7 8{%, n')Ul (¢, 0, nl)

« 2D Poisson solver in field-aligned coordinates for =0 mode using toroidal symmetry (0.=d,,+10~=0,)
[DUdSOn PPCF201 7] ¢1 (CB, y) — Ls_hlifted(awa a:%a aya 8§)U1 (3:7 y)

e 2D Poisson solver In flux-surface coordinates for low-n modes with flux-surface coordinates’ metrics
OKEDGE 2020-cvycle _
I_—I- Y ] ¢1 (vaa 97 n ) Lﬂux Surface(8¢7 81%7 897 837 n,)Ul (wa 6)7 n,)
* Poloidal grid resolution must be fine enough to describe poloidal structure of low-n modes

* |terative solver using GMRES for KSP solver and AMG for preconditioning via PETSc and Hypre
03/17
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Flute-ordering-free 2D Poisson solver for low-n modes is developed

S,
QST

A hybrid linearized Poisson solver function consisting of flute-ordered 1D Poisson and
flute-ordering-free 2D Poisson solver for full annular tokamak edge turbulence simulation

Marge results & Convert to real
coord transform space & output

to field-aligned
coords

coord. transform Calculate potential
to flux coords sequentially for each n
INn Fourier space

Input

low-n
0 <1 < NoDmax 2D Poisson solver

¢4 (1, 0,n") = L Ui(¥,0,n')

RHS value
U(z,y, 2 l l
. 1( . ) . gbl(a:,y,n’) ¢1($,y, Z)
Initial guess high-n
Tz, y, 2) napmax < 7 < mipmax | 10D POISSON solver

lel (% 97 n,) = ‘C’s—hliftedU{ (?% 97 n,)

* The highest toroidal mode number solved by 2D Poisson solver napmax and that by 1D Poisson
solver nipmax are free parameters to be chosen carefully

* A hybrid Laplacian operator consistent with the hybrid Poisson solver is also important for
numerically stable simulation 04/17
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Linearized IBM model and where the flute-ordering are used in original BOUT++

Linearized |IBM model » constant ion number density nip =1019 [m-3]

oU J i Jio
8—751 — —Boau (B|—I1> + By A||1, B”O - IC (Pl),
9 0 - 0. e normalized with poloidal Alfven unit
1

T —0) 91,
opP, p  original BOUT++ employs flute-ordering in
W - [¢1a O]

Ui = V.- (%le) , +** Poisson solver for electrostatic potential

0
J1 = v3_Allla (Vi -+ BgVBO_Z ° VJ_) ¢1,n — BgUl,n
bo xV, f-V bp X kg -V
frg) = X VLT VLG e gy - B X o VT
By By

+* Laplacian operator for parallel current
( for consistency with Poisson solver)

Jl — ViA”l
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Benchmark of Poisson solvers & Laplacians against IBM unstable equilibrium

QST
cbm18_dens8: a well-benchmarked equilibrium with circular cross section LS o
strongly unstable for ideal ballooning mode [Dudson CPC2009 PPCF2011] L0
* 1/n-th annular wedge domain in z for » mode with following resolutions § " Ny =512 o 64
£ 001 | 9@
Grid Resolution Nx Ny Nz 2 s .
Casel: Laplace w/ FO + Poisson w/ FO 510 64 32 —10 \
(same flute-ordering rule used in original BOUT++) 15 .
15 20 25 30 35 40 45 50
Case 2: Laplace w/ FO + Poisson w/o FO 512 | 512 32 - Mayor radius: R [m]
x|
Case 3: Laplace w/o FO + Poisson w/FO 515 | 64 6 =
(reported in CSC workshop 2021 as casel by mistake) B 1’5;'
S
| [
Case 4: Laplace w/ FO + Poisson w/ FO 512 | 512 32 % Ok
%
0.5
* In CSC WS2021, case 3 was reported as case 1 by mistake and < | \ |
it was concluded that flute-ordering has little impact in this equilibrium 9.4 05 06 07 08 09 10 LI 1.2

normalized radial label: y
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FO in Laplacian for J,; has large impact while FO in Poisson solver for ¢ has little

0.15, ' ' ' ' | <« Flute-ordering in Laplacian for J// has large
| Impact in low-n regime
(difference between circles and squares)
o
| ! | ¢ Flute-ordering in Poisson solver for ¢ has little
g 0.10¢ o impact in even low-n regime
N | . (difference between red symbols and blue ones)
= | 5
= | : :
> | : Asymmetric usage of flute-ordering (case 2 and 3)
5y 0.05} can give disruptive numerical instabilities
e e case l: Laplace w/ FO + Poisson w/ FO
e e case2: Laplace w/ FO + Poisson w/o FO |
| m = case 3: Laplace w/o FO + Poisson w/ FO |
| m = case 4: Laplace w/o FO + Poisson w/o FO| -
0.00 '

5 6 7 g
toroidal mode number: n
O/7/17



Q(f?T Flute-Ordering-free Laplacian and Poisson solver can reproduce high-n IBM

growth rate: y [w4]

0.00!

0.20
0.10

0.05 |

Poisson w/ FO

Poisson w/o FO
dson CPC 2009) |

on CPC 2009)

5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
torordal mode number: n

] * Flute-ordering seems good for high-n

regimes (~1% difference at n=20)

= O-free Laplacian and Poisson
solver (case 4) can capture IBM
eigenfunction for high-n (n=20)

flute-ordering-free: n =20 pressure P; [a.u.]

e

1.0

Height: Z [m]
S O
S

|
S
W

A
-

|
e
N

20 25 30 35 40 45 5.0
Major radius: R [m]
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Q(f?T Flute-Ordering-free Laplacian and Poisson solver can reproduce high-n IBM

| * Flute-ordering seems good for high-n

0.25 regimes (~1% difference at n=20)

= O-free Laplacian and Poisson
solver (case 4) can capture IBM

0.20 eigenfunction for high-n (n=20)

* Flute-ordering gives large difference
for low-n regimes (~36% at n=>5)

0.15}

=BOUT++ overestimates growth rate
in low-n regime [Dudson PPCF’11]
and FO-free scheme can suppress
this overestimation to some level

0.10f

growth rate: y [w4]

0.05} ™
| Test of FO-free Poisson solver and

Laplacian against low-n linear RBM In

O.OOE L I asingle-null diverted geometry was
> 6.7 8 9 10 1112 13 14 15 16 17 18 19 20 5150 finished [reported in CSC WS21]

toroidal mode number: n 08/17
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*Scale separated four-field RBM+DW model [Seto+ CPP’20]

%wl = — [Fl,m] - [FO, wl] +G (PpF) + Q(Panl) — Byo, (2'(:) + By [Ay15 ;l(l) + K(py) +,u"a|7|'w1 + ﬂlviwl’
3 | o +didy, O+ didyy 2
©pi = [¢1.5] = [¢0.21] — 28, (K(pl)—Bodu ( B, ) + By Ay, = ) + 1102py + 2. V2.
%Anl == &, Ap] - 041 + 8, (0ypy — [Ay1-p]) + 1y — AV,
0

1
oL Tl (2T ) (0p1 = [Ays> p]) +viViop,

ot

w=VF, J;=ViA, F=¢+6p, ¢=¢o+d, p=py+p, B=By+VA;xb, J=J+J,

no=10"0 m™>3], n=10"% A=10""% pu,=x1=v,=10"", p=x =10""

8306 o5 1o 19

- : : dial label:
* Gird resolution and toroidal mode numbers to be solved radial label: v
tor. mode # | 2D Poisson 1D Poisson §O°10 wl.wéfl(’)&'tlh}tét'e;} """""" /4 llllllllllllllllllll
: : . 3 = rotating frequency: @
binormal domain length | Nx | Ny | Nz |, ' 4| .op Laplace +1D Laplace FOBE e,
&0 ..3':
full torus (0<z<2z/1) 1028 | 128 | 256 | n=0,1,...,80 | n=0,1,2,3,4 n=5,6,...,80 So06f o
half torus (0<z<27/2) | 1028 | 128 | 128 | n=0,2,...,80 | n=0,2,4 n=6.8,...,80 g 004} It
uarter torus (0<z<2x/4 ‘q‘éooz e Most unstable:
I (0=z<27/4) 1 1028 [ 128 | 64 |1=0,4,...,80 | n=0,4 n=8,12,...,80 s | nea .
5, 00004812716 20 24 28 32 36 40 44 48 52 56 60

toroidal mode number: n 09 / ] 7
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Impact of binormal domain length on energy loss during pedestal collapse

QST
4,08 Energy loss level perp. kinetic energy spectra (quarter torus)
: 3 80 § 10—6
k> N 72 ?
= 0.06f L 64 § ~7
3 £ 56] a1
=3 = 48§ B
< O 5 5 -8
y 0.04: '840 é -
S | g 32 | 5
2 | S 24E " Of
5 0.02} g Ll Bl K
= - S B
| - e
| . 0 — UL 11l
0.00t ' 150 200 250 300 350 400 450 500
150 200 250 300 350 400 450 500 time: 7 [4]
: . A
time: ¢ [£4] : :
o perp. kinetic energy spectra (full torus)
*|nitially unstable modes (IlUMs) (n~32) sets the 304 . 10 °
pedestal collapse onset at t~200ta ¥ 2421 § »
. . . é 56 Col i {10
*lUMs are strongly excited and directly drive the = 438 Ollapse E
collapse for quarter case g 40f B
8 ] —y E
: : . @ 24 8 —_— — 5 9
*Low-n (n~1) modes are generated via nonlinear coupling 3 4} — HE
between IUMs and collapse is triggered by down-shifted © 8] ElS
modes (n=20~30) for full torus case (and half torus case) 150 200 250 300 350 400 450 500 -

time: ¢ [4] 1 O/] /
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&S/T Impact of binormal domain length on energy loss during pedestal collapse

Energy loss level ¢ w/o n=0 in full torus during collapse t=330

0.08 |

energy loss: AWped/Wped
o S
= o
B @)

Io .
S
e}

=
-
=

150 200 250 300 350 400 450 500
time: 7 [£4]

*|nitially unstable modes (IlUMs) (n~32) sets the
pedestal collapse onset at t~200ta

*|[UMs are strongly excited and directly drive the Collapse

collapse for quarter case

e —
—
T |

4
= R

*ow-n (n~1) modes are generated via nonlinear coupling -
between IUMs and collapse is triggered by down-shifted
modes (h=20~30) for half and full case

kinetic energy: Wi [B*/2u0]

50 200 250 300 350 400 450 500
time: ¢ [4] 1 O/] /



- . .
Impact of binormal domain length on energy loss after pedestal collapse

energy loss: AWped/Wped

0.09

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Energy loss enhancement by interplay between zonal flow
(ZF) and turbulence [Seto PoP’19] is also observed in full
torus case as well as half and quarter torus cases

*Similar energry loss level

*cf.) generation mechanism of ZF [Yagi PET2021]
***Reynolds stress cancels with Maxwell stress

**Pressure gradient drives ZF via geodesic curvature

11/17
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Impact of binormal domain length on energy loss after pedestal collapse

0.09
| Energy loss enhancement by interplay between zonal flow
5 | (ZF) and turbulence [Seto PoP’19] is also observed in full
3 0.08! torus case as well as half and quarter torus cases
= |
< *Similar energry loss level
s | . . .
= 0.07} *cf.) generation mechanism of ZF [Yagi PET2021]
O ' :
] **Reynolds stress cancels with Maxwell stress
"800 600 700 800 900 1000 1100 **Pressure gradient drives ZF via geodesic curvature

time: 7 [74]
perp. Kinetic energy spectra (full torus)

Turbulence burst occurs periodically after the
pedestal collapse

S00 600 700 800 900 1000 1100
time: 7 [74] 11/17
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é?S/T Spatio-temporal structure of flow and turbulence after pedestal collapse

flow & turbulence structure: quarter torus flow & turbulence structure: full torus
(a): n=0 E X B shearing rate wrxp [@4] (a): n=0 E X B shearing rate wgxp [@w4]

+0.34 1.0
-+0.17 0.9
-+0.00 0.3
+0.17 0.7
—0.34 0.6

(b): n=1,2, -

, 80 fluctuation intensity S [10™>V4BR]

+0.40 1.0
-+0.30
+0.20
+0.10
: —0.0 ; —
500 600 700 300 900 1000 1100 500 600 700 800 900 1000 1100
time: ¢ [24] time: 7 [14]

Fluctuation intensity: S@)= /> > 6, mn)e(,—m,—n)

n#0 m

* [urbulence bursts with cyclic oscillation between ZF and turbulence are observed in all cases

*n=1 fluctuation has global structure whose peak is located at turbulence bursts in full torus cas]ez/] .
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4| Numerical grid for full torus pedestal collapse in single-null configuration

QST
Grid information
1d
rid geomet
— B A 3. * Nx=260 (Ny_core=1995) for [0.85,1.05]
7| » Ny=288 (Ny_core=192)
0.5 g | .
£ 6} e Nz=256 for zperiod=1, [0,27]
2|
E 5t * lowpass=80, n=0,1,2,...,80 are taken
00 4z 550 503 00 v n=0, 1, ..., 4: 2D Poisson solver
é normalized radial label: v v n=5, 6, ..., 80: 1D Poisson solver
0.0007
05! | —=0.0006}
< 0.0005]
= 0.0004|
Q
& 0.0003}
1ol | 2 0.0002|
| =.0.0001 ]
14 16 18 20 22 00003 0.90 0.95 1.00
R[m] normalized radial label: y

13/17
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Governing equation and assumptions

Scale separated 3-field DW+RBM model (simplified ion diamagnetism + electron Hall effect)

0 J Jy
ot 1T — [¢1, @] = Bod (B ) + Bo A||1a BI + K(p1) +N||3|?W1 + 1 V2w, Bmag 3.129918 [T]
0 : - Rmag 2.286076 [m]
Epl [451 P] + x”c'?”pl + XLV_Lpl, . 101 [m-=]
8 ] 10)-1
8tA”1 =— [, Aj1] — 91 + be (O)p1 — [Ay1,p]) + 1)1 77 0x10
M1 1.0x10-7
w V F Jl ViA“, F:¢+52p, ¢:¢0+¢1, p:p0+p1, / T
B =B + VA“l X by, J|| — J||() -+ J||1, A7 :
XL 1.0x10-7
 Normalized with poloidal Alfven unit 7 1.0x10-6

e Use equilibrium pressure and parallel current profiles

 Use modeled constant ion number density and dissipations (hot based on equilibrium)

* No equilibrium radial electric field, SOL/DIV physics

Preliminary test only for checking whether the hybrid Poisson solver makes full annular torus simulation

possible

14/17



= . . . . . .
(%S/T Dispersion relation of preliminary pedestal collapse simulation

0.0 —m—mmmm—m—mr——— : o4 _
eeees. | ™ 2D Poisson| | = = 2D Poisson|
_ 0.064 . °s |* ° 1D Poisson|/{  _ | * <+ 1D Poisson|
< | ° %o 5 < | '
Q) | o o 3 0.02} a®®%e,
: 0.05 .. g . : .. 'o.
> | . °. > %
§ 0.04} . . % , s ooq _
‘,§ = . g_,, O.OO:'""""----:O -------------- .-.-.'0'.-.;.--*:
g .0 o - .' °°
gﬂ 0.03 o .... q;D 0
— .0. E : ‘.
é 002- .' o.... | % _002_ o‘..
— ; o | s ! o
0.01} |
O‘OOO""S”"1'0"'1'5'"'2'0"'2'5"'3'0"'3'5'"4'0"4'5””50 00457015 20 25 30 35 40 45 30
toroidal mode number: n toroidal mode number: n

* Nn=36 modes are no longer in ballooning branch, they have broad structures in radial direction
= Pedestal collapse is triggered mainly by DWRBMs spectra whose peak is n=18

* n=3 Is stable for DWRBM with 2D Poisson solver while n=3 is unstable for DWRBM with 1D solver
 Small (~3%) differences in n=4 and n=5 growth rate between 2D and 1D Poisson solver

= Using 2D Poisson solver for n <4 seems to be appropriate 15/17
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é’s}T Kinetic energy grows In reasonable manner and low-n modes get excited

6 full torus case: n=20,1, 2, ---, 80

Full annular edge turbulence simulations in ITER
baseline case is Iin preparation partially under
JIFT collaboration between QST and LLNL

10

perp. kinetic energy: [B* /2]

,/ j
150 180 210 240

107" 107, 107

S0,

N : | :

.l 1ol -8:

10 10} 10°}

5 10_15é‘ lO_Hé- 1()'9%

- 1l ol L

5107 10" T

i 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

toroidal mode number: n toroidal mode number: n toroidal mode number: n toroidal mode number: n 16/17
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oot Summary

A hybrid Poisson solver for full annular tokamak edge turbulence simulation has been developed

* [Erratum of CSC WS’21] impact of flute-ordering assumption in low-n ideal ballooning mode
**Flute-ordering (in Laplacian for J//) has large impact on IBM growth rate in the presented case

 Pedestal collapse simulation in full annular tours domain in shifted circular geometry

***Low-n modes generated via nonlinear couplings among initially unstable modes before pedestal
collapse for half and full tori

s*n=1 fluctuation has global radial structure during / after collapse in full torus case

***Energy loss enhancement by interplay between flow and turbulence is observed after the pedestal
collapse and energy loss levels are saturated to a similar level in all cases

* Preliminary test of full annular torus turbulence simulation in single-null divertor geometry
**Hybrid Poisson solver enables nonlinear full annular torus simulation in diverted geometry

***Production run with ITER baseline equilibrium is in preparation 17/17
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growth rate: y [@w4]

0.05}

0.00!

025}
0.20}

0.15}

=
ek
-

case 1: Laplacian and Poisson w/ FO

case 4: Laplacian and Poisson w/o FO|-
n=20 BOUT++ (Dudson CPC 2009) | ]

n=20 ELITE (Dudson CPC 2009)

5 6 7 8 9 10111213 1415 16 17 18 19 20
toroidal mode number: n

Growth rate (v/w

A)

Dudson PPCF2021

—
&

=~
I

=
o

-
DO

------ B GATO (480x960)
—o— ELITE (R/B=1.5)

*  BOUTH+

0 10 20 30 40) 50 60
Toroidal Mode Number (n)

S
—

30
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(‘fS/T 2D Poisson solver test 2: linear resistive ballooning mode In single null geometry

2D Poisson solver is tested in single-null

o0

geometry by comparing linear RBM growth
rates by 2D Poisson solver and those by1D >
flute-ordered Poisson solver 0.5} § 6;
(G -
> |
Linearized RBM model with dissipation 5 5|
% —pody (1) - o] NXcore=195 |
8t B() OO- . 4 . |
, . — NVYcore=192 0.85 0.90 0.95 1.00
+pLViw: + 0w & Nz=16 normalized radial label: v
oP, N 0.0007 . .
57 — [$1, Po]

oh < 0.0006|
815”1 = —0|¢1 +nJ|1 —0.5¢ | c:\\] 0.0005!
1 ) = 0.0004/
n=10"% puy =10"", p;=10"" % 0.0002|
—L.O; | & 0.0001}

' ' ~=1019 -3 . .
constant ion density n; =101° [m-3] P 0.0000 = 0.19.0 - 101'93 1 )
Dissipations in vorticity equation are R[m] o e e
required for numerical stability in both * 1/n-th annular wedge domain for n=3,4
2D and 1D Poison solver. * z-derivatives are evaluated with FFT

06/16



&?T 2D Poisson solver captures RBM instability but growth rates are different

0.04

linear growth rate: y [wa]

0.00!

RBM eigen-functions are clearly obtained
by both Poisson solvers but their growth

Linear growth rate of K

¥ o/

BM

= <
S S
™ Ve,

-

.

-

—
_—

e o ﬂute—orderqd [D-Poisson solver] |
e e pew 2D-Poisson solver ‘

3 4

toroidal mode number: n

rates are different by 6~8%

= Further tests (mesh convergence etc...)
are required to clarify impact of flute-

ordering in complex geometries

Height [m]

n=4 perturbed pressure
by 1D Poisson solver

1.50 1.75 2.00 2.25
Major radius [m]

Height [m]

n=4 perturbed pressure
by 2D Poisson solver

0.50 - N\
0.25 -

0.00 - |

I
=
N
Ul

I

—0.50 -

—0.75 -

—1.00 A

1.50 1.75 2.00 2.25
Major radius [m]
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Spatio-temporal structure of flow and turbulence after pedestal collapse

flow & turbulence phase: full torus flow & turbulence structure: full torus
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Electromagnetic oscillations (ZF -> turb.) rather
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* [urbulence bursts with cyclic oscillation between ZF and turbulence are observed in all cases

*n=1 fluctuation has global structure whose peak is located at turbulence bursts in full torus cas?z/] .



9 Kinetic energy grows In reasonable manner and low-n modes get excited
QST
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