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Electron Impact lonization (El)

Eirene Etirlo;m_??H g+ nybhEL 215 The amount of ions generated by using
e+ H—2+H' ﬁhﬂJUiLHzildS ) - AMJUEL in Eirene or HYDHEL in
Aaand i et et H HYDHELZL1  Enomia is basically the same.
However, the energy lost by electrons is
02 — quite different as Eunomia assumes a
o 3 Eunonia O constant lost per ionization/excitation
E10°F 2 process and in Eirene this is dependent.
a = e Thus, the Eunomia implementation is
gl e 0| not equivalent to the effective rate in
. . . . 0.0 AMJUEL => Possible effect at low T-.
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_ | | | S rlm | * The excited state in Eunomia is either
Fig. 1: Radial plot at z=0m of the H density (left) and temperature (right) for a situation in which only El is . . .
considered with a frozen plasma background. de‘EXC|tated orion |ZEd .
Total Source Intensity WW
Electron energy (W) -589 -193
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Molecule Assisted Recombination (MAR)

H* +Hy, —» H+ Hf AMJUEL 3.2.3 e Eirene deals with dissociation of H,* in a
more involved way than Eirene. This
produces some differences in the sink
of ions and large differences in the

Eirene Eunomia
e+ Hf =2 +HY+HYAMIUEL2.211) e+ Hf — H+ H* Spontaneous

e+ Hf e+ H+H" AMIUEL2.2.12

energy terms.
e+H} - H+H AMJUEL 2.2.14 _
 Differences are related to the way
z = T Eunomia deals with excited states (like

«'{;1019 % 005 ¢ |n El).
z 2 0.04f
2 £ 0.03 * Eirene considers multiple outcomes
£ — = 002 from the dissociation.
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Fig. 2: Radial plot at z=0m of the H. density (left) and temperature (right) for a situation in which only MAR
is considered with a frozen plasma background.
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Proton-Molecule Elastic Interaction
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Fig. 3: Radial plot at z=0m of the H. density (left) and temperature (right) for a situation in which only El is
considered with a frozen plasma background.
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e Differences in the calculation of the
post-collision angle distribution lead to
differences in the neutral profiles and
the sink of energy computed by each
module.

e Eirene: Morse Potential
Eunomia: Tskhakaya
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SOLPS-ITER vs B2.5-Eunomia: High Density Case

e Both codes produce values comparable with TS
measurements.
 Different electric potential as a BC at the source.
e Different axial distributions of the plasma beam
e Different neutral distributions
e Not a good match in high pressure cases
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Fig. 6: Electric potential profile used as aBC at  Fig. 7: Radial distribution density of atomic
the source. hydrogen at z = Om.
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Fig. 4: Axial (left) and radial profile at the TS target position (right) of the electron density.

Solid line is SOLPS-ITER, dashed line is B2.5-Eunomia and points represent the TS
measurements.

§30 B §15 7 0.46Pa —

& C) 4.30Pa —

& &

§2.0 - § 1.0}

=% =%

g g

e e

= 1.0F s=0.5

= 0.46Pa — =

3 4.30Pa — 3 %

EO.O ! 1 ! 1 1 L 1 EOO [ L L ! L L L L L L
-1.2 -1.0 -08 -06 -04 -02 0.0 20 -15 -10 -5 0 5 10 15 20

Axial position (m) Radial Position (mm)

Fig. 5: Axial (left) and radial profile at the TS target position (right) of the electron
temperature. Solid line is SOLPS-ITER, dashed line is B2.5-Eunomia and points represent
the TS measurements.




SOLPS-ITER vs B2.5-Eunomia: Low Density Case

Source potential (V)

Fig. 10: Electric potential profile used as a BC at
the source.
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Good agreement in temperature at TS position.
Different electric potential as a BC at the source.
Different axial distributions of the plasma beam.
Different anomalous transport coefficients.

Different neutral distributions.

SOLPS-ITER produces a better match than B2.5-Eunomia.
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Fig. 11: Radial distribution density of atomic
hydrogen at z = Om.
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Fig. 8: Axial (left) and radial profile at the TS target position (right) of the electron density.

Solid line is SOLPS-ITER, dashed line is B2.5-Eunomia and points represent the TS

measurements.
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Fig. 9: Axial (left) and radial profile at the TS target position (right) of the electron

temperature. Solid line is SOLPS-ITER, dashed line is B2.5-Eunomia and points represent

the TS measurements.
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SOLPS-ITER vs B2.5-Eunomia: Conclusions

e Both codes seems to produce results close to TS measurements.

e Nevertheless, this is achieved with completely different neutral distributions and electric
potential at the source.

e This is caused by the different implementation of relevant plasma-neutral collision processes.
e Thus, there are still too many free parameters that need to be reduced:
* Measurement of electric potential at the source TS position.
* Independent calculation of transport coefficients in low density cases (currently in progress).
* Measurement of neutral distributions to find which neutral module provide a better match.

e Based on the limited experimental data and how collision process are implemented, it seems
that SOLPS-ITER provide more accurate results, but more data for comparison is required.

e Currently analysis higher pressure cases with SOLPS-ITER (convergence issues in B2.5-
Eunomia) and molecule collision effects missing in Eunomia (mostly El) until new experimental
data is available.



Coupling of SOLPS-ITER with a Finite
Element Wall Model

o



Finite Element Wall Model

e SOLPS-ITER is currently being expanded to allow coupling with a Finite Element Wall Model.

e The aim of this model is to self-consistently calculate target parameters that are of relevance
for SOLPS-ITER.

e Current focus: target temperature, evaporation flux for a liquid metal.

Being done in the frame of Magnum-PSI.

Working on making it more general (currently the implementation is extremely ad-hoc)

First objective: Pass plasma heat flux from B2.5 to Target Model. Achieved
e Now: Pass surface temperature to Eirene reflection model. Testing

e Future: Standarize the passing of information between codes and increase the amount of
data exchanged.



Results FEWM

* First test: check the change in surface temperature with a dummy target at two neutral
pressures (two heat fluxes).

e Target bottom temperature constant (180C) to represent active cooling. Not quite realistic,

testing new boundary conditions now based on heat flux through the Magnum-PSI cooling
- system.
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Fig. 12: Mesh of the 2D axial-symmetrical target employed. For
testing.
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Fig. 13: Radial profile at the target of the Heat flux passed from
B2.5 at two neutral pressures.
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Fig. 13: Radial profile at the target of the target surface
temperature self-consistently computed.
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