CRM and photon tracing module in EIRENE

Ray Chandra

23-11-2022

H colrad or the CRM in Eirene

- Based on the collisional radiative model by Sawada (1995)
- Resolve population coefficients for each Eirene cell
- Derive effective rates such as effective ionization and recombination rates to be used in EIRENE
- Provide population densities of excited species as a bulk ion species for the Photon tracing module

CRM for atomic hydrogen

$$
\frac{dn_H(p)}{dt} = -\left[\sum_{p>q} (A_{(p,q)} + F_{(p,q)}n_e) + S_{(p)}n_e + \sum_{p
$$
+ \sum_{q>p} [A_{(q,p)} + F_{(q,p)}n_e] n_{H(q>p)} + [\alpha(p)n_e + \beta(p)] n_e n_{H^+} + \Gamma_{H(p)}
$$
$$

- A = Spontaneous emission rate
- $F = De-excitation$ rate coefficient
- S = ionization rate coefficient
- $C =$ Excitation rate coefficient
- α = 3-body recombination rate coefficient
- β = radiative recombination rate

CRM in steady-state, matrix form

 $-(S_{(1)} + \sum C_1) n_e$ $A_{(1,p)} + F_{(1,p)} n_e$ $A_{(1,q)} + F_{(1,q)} n_e$ $(\alpha_{(1)} n_e + \beta_{(1)}) n_e$ $C_{(1,p)} n_e$ $-A_{(1,p)} - (S_{(p)} + F_{(1,p)} + C_{(p,q)})n_e$ $A_{(p,q)} + F_{(p,q)}n_e$ $(\alpha_{(p)}n_e + \beta_{(p)})n_e$ $C_{(1,q)} n_e$ $C_{(p,q)} n_e$ $-\sum A_{(q)} - (S_{(q)} + \sum F_{(q)}) n_e$ $(\alpha_{(q)} n_e + \beta_{(q)}) n_e$ $S_{(1)}n_e$ $S_{(p)}n_e$ $S_{(q)}n_e$ $- (\sum \alpha n_e + \sum \beta)n_e$ n_H $n_{H(p)}$ $n_{H(q)}$ n_{H^+} = $-\Gamma_H$ $-\Gamma_{H(p)}$ $-\Gamma_{H(q)}$ $-\Gamma_{\rm H^+}$

$$
\begin{bmatrix} -A_{(1,p)} - (S_{(p)} + F_{(1,p)} + C_{(p,q)})n_e & A_{(p,q)} + F_{(p,q)}n_e \\ C_{(p,q)} n_e & -\sum A_{(q)} - (S_{(q)} + \sum F_{(q)})n_e \end{bmatrix} \begin{bmatrix} n_{H(p)} \\ n_{H(q)} \end{bmatrix} = \begin{bmatrix} C_{(1,p)} n_e \\ C_{(1,q)} n_e \end{bmatrix} n_H + \begin{bmatrix} (\alpha_{(p)} n_e + \beta_{(p)})n_e \\ (\alpha_{(p)} n_e + \beta_{(p)})n_e \end{bmatrix} n_H + \begin{bmatrix} -\Gamma_{H(p)} \\ -\Gamma_{H(q)} \end{bmatrix}
$$

$$
\begin{bmatrix} n_{H(p)} \\ n_{H(q)} \end{bmatrix} = R_1 n_H + R_0 n_{H^+} + R_{ext}
$$

 R_1 , R_0 and R_{ext} are population coefficients

General EIRENE test case for testing rate coefficients

- EIRENE 2D grid with ne and Te varied along x and y dimensions
- Ne, 20 points, $~1e8 1e16$ cm3
- Te, 200 points, $-0.5 1e4$ eV

The effective ionization rate of H colrad line perfectly with AMJUEL

Effective ionization rate S_{eff} :

$$
S_{eff} = S_{(1)} + \sum_{p} \left(C_{(1,p)} - R_{1(p)}(F_{(p,1)} + \frac{A_1}{n_e}) \right)
$$

Eirene CR -> H colrad Eirene AMJUEL -> using AMJUEL rates within Eirene

AMJUEL – last update entry: May 18

> Aalto-yliopisto Aalto-universitetet Aalto Universitv

The H colrad recombination rate starts to diverge at Te > 400 eV

Effective recombination rate α_{eff} :

$$
\alpha_{eff} = \alpha_1 n_e + \beta_1 + \sum_p R_{0(p)}(F_{(p,1)} + \frac{A_1}{n_e})
$$

• Discrepancy can be due to the different expressions of the recombination rate coefficient

The effective ionization cooling rate of H colrad line perfectly with AMJUEL

The H colrad recombination cooling rate starts to diverge at Te > 400 eV

Effective recombination cooling rate αE_{eff}

$$
\alpha E_{eff} = \beta_1 \bar{E}_1 - \alpha_{(1)} n_e E_\alpha + \sum_p R_{0(p)} (S_p E_{p-\alpha} + \beta_p \bar{E}_p - \alpha_p n_e E_{p-\alpha}) + \sum_{q>p} (R_{0(p)} C_{p,q} E_{p-q} - R_{0(q)} F_{(p,q)} E_{p-q})
$$

• Directly derived from recombination rate, so same discrepancy occurs

Proposed CRM structure in Eirene (H Colrad)

Proposed *H2* **Colrad structure in Eirene (currently non-existent)**

The previous (2002) photon tracing model (Reiter et al., PPCF 2002) was revisted

The photon tracing routine in EIRENE is analogous to neutral particle tracing, with $v=c$ and $E=hv$, differences:

- Bulk ions are now excited species (photon sources)
- Rate coefficients for sources and photon-background interaction must take into account line shapes (natural, Doppler, Zeeman, etc)

Determine opacity with local population escape factors

Determining the population escape factor

$$
\Theta_p = \frac{E - G}{E} = 1 - \frac{G}{E} \longrightarrow \text{ emission}
$$

$$
\Theta_p = 1 - \frac{\int_{\Omega} \int_{line} \alpha(x, \lambda) L_{\lambda}(x, \lambda, \Omega) d\lambda d\Omega}{\int_{\Omega} \int_{line} \epsilon(x, \lambda) d\lambda d\Omega}
$$

Behringer K 1998 Escape factors for line emission and population calculations MPI-Garching Report, IPP 10/11

Θ_p **in Eirene**

$$
\Theta_p = \frac{E - G}{E} = 1 - \frac{G}{E} \longrightarrow \text{ anission}
$$

G is simply the number of absorbed photons i.e volume photon sink tallies E is the volume photon source

Thus Θ_p can be evaluated per cell of Eirene

Photon tracing test case

Cylindrical test case, 20 radial points

Homogeneous plasma and atomic density

 $T_H = 1$ eV, $n_H = 10^{14}$ cm⁻³ , b = 5 cm

Simulated Ly-a and Ly-b photons (2e6) with volumetric sources (H(n=2,3) as bulk ions)

Line shape only doppler broadening

Population escape factor aligns with analytical function for $Ly-\alpha$ and $Ly-\beta$

Aalto-yliopisto **\alto-universitetet** alto Universitv)

 $\Theta_p = f(\tau)$ (solid blue line)

 $\tau = \alpha(\lambda)b$ is the optical depth or 'thickness'

Hollow points with \sim 10⁶ photons Solid points with \sim 10⁹ photons

Agreement for Ly- α at better statistics

2D (or 1D) profiles of the population escape factor: Ly- α **and** $Ly - $\beta$$ opaque at the center

Aalto-yliopisto Aalto-universitetet **Aalto University**

Current project state

Whats on hand:

- H colrad, He colrad
- Photon module
- A&M and photon cylinder test cases

Whats planned:

- CRM-photon coupling (for Planck test)
- Application to JET 81472
- H colrad data update
- He colrad testing
- H_2 colrad creation

