
Streamlining the main loop
Increasing readability & maintainability

Step by step merging « roadmap »
Ø develop PB [tag to have a comparison point before dealing with 1)]
Ø develop_openmp [changes in develop merged - json] AMU/HLST

-> should be merged in develop once independently tested
Ø Forks/iter/species_scaling(_DR3) IO/ISFIN

1) import thousands of changes in blanks, hyphens, subroutines names
to develop [adopt same rules as defined by IO to avoid such situation ?]

2) Move the (few) SOLPS specific statements to the proper interface
routines (e.g. avoid using interface modules in other parts of the code)

3) import changes to non-linear iterative mode, Arhenius rates, radiation
tallies … to develop & in the manual

4) Review the implementation of new tallies introduced to allow species
resolved rescaling (enforce particle conservation so as not to loose particles in
EIRENE, by –slightly- rescaling densities)

5) proceed with streamlining along the lines discussed during the
meeting

Step by step merging « roadmap »
Ø develop PB [tag to have a comparison point before dealing with 1)]
Ø develop_openmp [changes in develop merged - json] AMU/HLST

-> should be merged in develop once independently tested
Ø Forks/iter/species_scaling(_DR3) IO/ISFIN

1) import thousands of changes in blanks, hyphens, subroutines names to
develop [adopt same rules as defined by IO to avoid such situation ?]

2) Move the (few) SOLPS specific statements to the proper interface routines
(e.g. avoid using interface modules in other parts of the code)

3) import changes to non-linear iterative mode, Arhenius rates, radiation
tallies … to develop & in the manual

4) Review the implementation of new tallies introduced to allow species
resolved rescaling (enforce particle conservation so as not to loose particles in
EIRENE, by –slightly- rescaling densities)

5) proceed with streamlining along the lines discussed during the meeting

Core segrega(on: principle

Ø What do we mean ?
Ideally : all branching dealt with in the starter phase, then compact core just
does what is strictly needed using generic routines

EIRENE is very far from this model

Ø Find a pragmatic way forward in that direction so as to :
- improve performance without loosing/damaging functionnalities (user’s

immediate perspective)
- part of the streamlining of the code ->lower the entry barrier to the code to

facilitate further maintenance.
-

Ø Moving things that can be precalculated to the starter
Move pre-calculation additional surfaces to starter phase to speed up calculation (when relevant). Implemented for

triangles but needs checks. Octree usable.

Ø Reduce branching (esp. Geometry)
introduce cell & face structure types, unifying the treatment of unstructured and structured grids
(quite some work !)

++ readability
++ takes us closer of the concepts used for IMAS gdd
++ less special cases to worry about

To be noted : Toroidal faces in 2D cases need to behave as periodicity surfaces (check on phi)
surfaces are not necessarily planes (circular, elliptic grid)

some observations :

Branching identified as an issue on BlueGene (strongly architecture dependent)
geometry branching difficult to eliminate (LEVGEO but not only) and MR’s exercise with pragmas showed no visible

effect on performance – on the case(s) tested

Core segregation: concrete first steps

Code streamlining aspects

Ø introduce particle type, pass as argument (locate, folneut …). Avoid as much as possible side effects
in function/subroutine calls
Would open the way for unit tests

Ø rename key variables if names not explicit enough (T*-> Time2*). First step could be progressively
describing variables in modules
MODCOL could also be made more explicit

ØMake the modules core, starter + (post-processor) specific,
(Use the openmp work as a guide / private vs shared variables)

ØRefactor folneut.f by identifying individual actions, turn them into procedures and use a do while loop
enclosing a select case construct (or possibly also recursive calls)

Here : make the core MC calculation more readable as a first step

Things that make entry potential high : cryptic variable names, side effects in procedures, gotos spaghetti
routines

Ø Dealing with folneut : mid december 1 one day common work (YM, PB,
JG, WD) -> Leuven

Ø Cell & faces structure

Ø Plan meeIng at IO (YM+XB)

Timeline and assignments ? (2021)

Today :
- presentation of the proposed way to deal with folneut
- Way forward on geometry ?

