
Eiron
Exploring parallelization strategies for EIRENE

Oskar Lappi

November 23, 2022

Presentation outline

• Recap of the goals behind the Eiron project
• An EIRENE-Eiron comparison with some simple slab cases
• Some parallel algorithms for the neutral particle transport

problem
• Performance comparisons

Recap: the problem

• EIRENE has a plethora of features, supporting a user
community with multiple use-cases and integrations with
external software

• EIRENE’s computational capacity is being stretched in more
challenging use cases, there is increasing demand for
simulations at larger computational scale

• These users of EIRENE rely on current interfaces and behavior
of EIRENE, so we cannot easily make breaking changes

• Making fundamental changes in order to improve performance
and scalability is difficult to begin with, and the constraints of
not breaking multiple legacy use cases while doing this makes
the task more difficult

Recap: the project

• We want to try different approaches before settling on one for
EIRENE, compare their performance and scalability

• We’re building a modular software library with a simplified
core toy model of the neutral particle transport problem and a
very lean set of features compared to EIRENE

• We’re using the library to create different solvers and
comparing their performance and scalability

• We’re calling this software library Eiron

EIRENE vs Eiron

Eirene (E ιρηνη)
• Athenian goddess of peace
• Serious business

Eiron (E ιρων)
• Athenian comedy character
• Less serious business

Eiron is much more simple than Eirene

Eiron...
• only solves problems on 2D structured Cartesian grids
• has nearly no physics built into it
• only has one simple (hard-coded) track length estimator
• does not yet calculate tally variances

Eiron has more of a software engineering focus

Eiron...
• provides components that interface with each other, which

allows us to compose them in different ways
• has multiple parallel implementations of a (simplified) neutral

particle transport solver using OpenMP and MPI
• the design is modular and data driven, and should be flexible

enough to implement a few different physics cases
• end-to-end tests are used to compare the equality of the

parallel implementations
• will produce the same result independent of algorithm and

number of threads (with threshold for floating point
operations)

Comparing EIRENE & Eiron with a contrived 2D slab case

Because Eiron is mostly a performance study, there is not much in
terms of validation. In lieu of that, I’ll try to show that Eiron
passes the eye test: similar cases produce results that look
qualitatively similar between EIRENE and Eiron.

The goal here is really just to show that Eiron does the same work
that EIRENE does (for these simple 2D slab cases) and that
therefore the performance lessons we’ve learned from Eiron can be
assumed to translate to EIRENE.

Comparing EIRENE & Eiron with a contrived 2D slab case

Let’s start with a constant angular distribution orthogonal to the
line source, 1200000 particles, one terminating and one scattering
collision process. The scale will be off by a large multiple, but
that’s not important.
Eiron’s rates are ionization rate: 0.0076, scattering rate: 0.0056.

Figure: EIRENE Figure: Eiron

Comparing EIRENE & Eiron with a contrived 2D slab case

Same case, slices in the x direction

Figure: EIRENE Figure: Eiron

Comparing EIRENE & Eiron with a contrived 2D slab case

Slices in the y direction

Figure: EIRENE Figure: Eiron

Comparing EIRENE & Eiron with a contrived 2D slab case

Now let’s see what happens when we keep the rates the same but
switch to an isotropic angular distribution at the source.

Figure: EIRENE Figure: Eiron

Comparing EIRENE & Eiron with a contrived 2D slab case

Isotropic angular dist, slices in the x direction

Figure: EIRENE Figure: Eiron

Comparing EIRENE & Eiron with a contrived 2D slab case

Isotropic angular dist, slices in the y direction

Figure: EIRENE Figure: Eiron

Some data structures in Eiron

• Particle type enum:
{ATOM|MOLECULE |TEST_ION|PHOTON|ELECTRON|BULK_ION}

• Chemical species properties:
mass, ionization energy, charge, etc.

• Particle species:
index{type, i}, species properties

• 2D plasma backgrounds:
density, temperature, drift velocity

• Particles source:
line segment, particle type

• Test particles:
type, position, velocity, weight

Some data structures in Eiron

• Collision event type: enum designating collision resolution behavior
{IONIZATION|ISOTROPIC_SCATTERING|etc.}

• Collision rate model: enum designating a function f : bgcell → rate
• Collision process:

event type, incident bg spec., incident particle spec., new particle
spec.

• Collision event:
event type, updated particle

• Particle path:
list of nodes (position, speed, weight)

Key operations

• Collision event resolution:
particle, event_type, position → collision event

• Collision rate calculation:
bg cell, rate model → rate

• Ray path discretization:
ray → list of tuples (cell index, length)

• Line path discretization:
line segment → list of tuples (cell index, length)

Some high-level components in Eiron
Actors

• Particle simulators
task: Monte Carlo -simulation
input: line sources, collision rate grids
output: particle paths

• Tallier
task: Scoring of tallies
input: particle trajectory either as ray (on the fly)

or line segments (tallying as a separate step)
output: output tally grids

Message data
• Particle paths

input and output message structure for the actors
a simulator produces them
a tallier consumes them

Simplified structural view key components

Simplified structural view key components

The components can be composed in many ways

Figure: Monolith

Parallelized using an OpenMP parallel for-loop over particles.

We’ve compared shared tallies with atomic adds and private tallies
(each thread keeps its own tallies and they’re reduced at the end).

The components can be composed in many ways

Figure: Deferred tallying

Parallelized using two separate OpenMP parallel for-loops over
particles: one in the simulator, one in the tallier.

Again, we’ve compared shared tallies with atomic adds and private
tallies (each thread keeps its own tallies and they’re reduced at the
end).

The components can be composed in many ways

Figure: Pipeline execution

Parallelized using an OpenMP parallel for-loop over particles in
simulator.

Parallelized using OpenMP tasks in tallier: one thread waits for
paths, creates one tallying task per path.

The components can be composed in many ways

Figure: Pipeline with domain decomposed tallying

OpenMP-parallelism: same as last slide.

MPI-parallelism through domain decomposition.

The components can be composed in many ways

Figure: Domain-decomposed pipelines1

OpenMP-parallelism: same as before.

MPI-parallelism through domain decomposition and passing
particle state between simulators.

1This setup has not been implemented yet

The components can be composed in many ways

Figure: Domain-decomposed monolithic simulator-talliers2

OpenMP-parallelism: as with the monolithic setup.

MPI-parallelism through domain decomposition and passing
particle state between simulators.

2This setup has not been implemented yet

Benchmarks

We’ve run some benchmarks and tested the scalability of the
implemented approaches.

The benchmarks were run with a simple setup: one test particle
species, one scattering collision process and one ionizing collision
process.

Remember that this is with a 2D structured grid, cell collision rates
are precalculated, and no variances are being calculated.

Benchmark results and lessons learned

Strong scaling of the monolithic and deferred tallying designs,
comparing shared tallies and atomic adds with private tallies and
reduction (deferred tallying labeled synchronous here).

Benchmark results and lessons learned

We see that using a shared tally grid is consistently slower by a
constant factor up to 16 threads. The results after that also look
bad for the shared tally grid approach, but this is a strong scaling
case with a small grid, we can’t read too much into the very end.

Results and lessons learned

If we separate the time it takes to simulate from the time it takes
to tally in the deferred case, we see that it is indeed tallying on a
shared grid that’s slow.

Results and lessons learned

This weak scaling plot tells us that the shared grid implementations
do indeed get slower as a function of threads, even if we try to
keep the rate of synchronization low by increasing the grid size

Results and lessons learned

Focus on the red and green lines here, and the pattern becomes
even more clear: the cost of synchronizing on a shared resource
will increase with the number of threads.

Results and lessons learned

The effect is most clear when we scale the number of threads on a
small grid and keep the particle count per thread constant. With
an increase in the number of threads hitting a constant number of
cache lines, the threads need to synchronize at an increasing rate.

Results and lessons learned

Using a private grid, threads will get the same number of particles
and the same size grid at every scale in this plot, so runtime is
expected to be constant.

Results and lessons learned

This is a classic trade-off between time and memory.
Shared grid → mem. use constant, time goes up with part. count.
Private grid → mem. use = O(n), time is constant.

Project status

Current tasks being worked on:
• Passing the simulation state of a particle from one simulator

to another
• Managing particle generation and load balancing when the

task of simulating one particle is shared by multiple simulators

Thank you

Questions?

Appendix: Storing particle paths to tally later

Using deferred tallying, we could output particle histories as point
paths instead of the full tallies. Let’s see what we could do with
that.

• The user first produces one set of tallies using a separate
tallying program, and then suddenly realizes that they need
another tally that they did not specified, they call the same
program again to produce it without having to simulate any of
the particle dynamics or tallying anything else

• The user wants to produce a time evolved animation of the
system. They write a script that cuts out a slice of a particle
history between a start and end time. They use this script to
produce new particle files corresponding to frames in the
movie and runs a tallier program to produce tally files
corresponding to the frames (or their deltas) and then
visualizes the tally to render each frame

Appendix: deterministic random numbers
In order to get the same random numbers every time, regardless of
the thread running the simulation and at which point of the
particles history the thread started processing the particle, we
create a new random number stream per particle (reseed at every
particle). From this sequence of random number streams we can
deterministically get the same random number from any thread
with a two-part index: the random number stream id and the
offset within the stream.

A thread will set its own random number stream position before it
starts simulating a particle. When a thread serially moves to the
next particle, it increments the stream id and sets the offset to 0.
In OpenMP loops, the particle id space is partitioned between the
threads, and they all set their streams accordingly. When particle
simulation is distributed to multiple processes, the stream position
is communicated along with the particle.

Appendix: deterministic random numbers

There are two important considerations when choosing the random
number generator in this case:

1. The cost of reseeding must be low, this disqualifies e.g. the
Mersenne Twister. Reseeding with a Mersenne Twister has a
35% overhead, because the initialization of the internal state
array is a heavy operation (the state array is a few KB).
Instead I’m using PCG, which is roughly 300 times quicker on
my laptop.

2. The internal state of the PRNG should have a large enough
domain, a 32 bit internal state is probably too small. The
birthday collision probability for 32-bit numbers = 50% at a
population of 77163 particles. For 64-bit values, the collision
probability is 50% at 5 billion particles (short scale billions).
And of course, with 32-bit numbers you can only have 232

unique particle histories (∼ 4 billion).

Appendix: Path discretization

∫ L

0
f ds =

∑
k∈grid

fk ∗ lk

Let’s go back to that integral. We’re on a grid, so the integral is
the sum of products of collision density and path length within
each cell.

Appendix: Path discretization

In order to calculate the sum, we must find the length lk within
each cell k, I call this the particle path discretization problem. We
also need the lengths for tallying.

Appendix: Path discretization

The problem is similar, but not equivalent, to line rasterization in
computer graphics. We want to transform a line (p0, p1) or a ray
(p0, ~v) to a list of tuples (cell_index, length).

Appendix: Path discretization

There are two separate path discretization methods:
• Ray discretization, when we’re simulating and only have a

starting point and direction
• Line segment discretization, when the path has been fixed,

can be useful in deferred tallying
It’s easy to conceive of a naive algorithm, let’s say for a line
segment:

1. Use a transformed space where the line segment's starting point < end point for both x and y
2. Set p = the starting point
3. While true:

| Set cell = the cell surrounding p
| Check for an intersection with the right and upper cell boundaries
| if there is no intersection, calculate the length for cell as |end - p|, break loop
| calculate the length for cell as |intersection - p|
| Set p = intersection

We’re using a faster but more convoluted algorithm for the 2D
case, but this one generalizes nicely to 3D structured grids.

Appendix: Monolith vs deferred tallying solver

100000 particles, 20482 grid

Figure: Monolith Figure: Deferred tallying

Appendix: Monolith vs deferred tallying solver

Figure: Diff of the two results, largest errors on the order of 10−9

Appendix: Monolith vs pipeline solver

100000 particles, 2562 grid

Figure: Monolith Figure: Pipeline: 1 sim, 2 talliers

Appendix: Monolith vs pipeline solver

Figure: Diff of the two results, largest errors on the order of 10−10

