

# PWIE-SPA 4-D002 Annealing of chosen tungsten-based materials and quantification of recrystallization kinetics

**Wolfgang Pantleon** 





This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.



Investigated Materials

- 1. Additively manufactured W EBM
- 2. Powder metallurgical W<sub>f</sub>/W
- 3. Cold-rolled W 80 ppm potassium-doped

Characterization techniques

- Before mainly EBSD and HV
- More recently supplemented by XRD and CT







Wolfgang Pantleon | SPA WPPWIE midterm meeting 2022 | Virtual | 29. August 2022 | 2

Stefan Antusch

Yiran Mao





#### **Computer tomography at DTU 3D Imaging Center**



|              | ZEISS Xradia<br>410 Versa  | Nikon<br>XT H 225                        | ZEISS<br>nanoXCT-100               |
|--------------|----------------------------|------------------------------------------|------------------------------------|
| Resolution   | 1 - 50 µm                  | 5 - 200 µm                               | Down to 50 nm                      |
| Sample size  | 1 - 50 mm                  | 5 - 50 mm<br>(max FOV 35 mm)             | Up to 65 µm                        |
| Power        | 10 W                       | 225 W                                    |                                    |
| X-ray Energy | 40 - 150 keV               | Up to 225 keV                            | 9.2 keV (Ga Ka)                    |
|              |                            |                                          |                                    |
|              | Most suited for<br>purpose | Best transmission,<br>but low resolution | Best resolution,<br>too low energy |



# **AM W Electron beam melting**



- Specimens from MAT-T.03.01-T003
- Cutting





- KIT 99.6% dense
- EBSD investigation on cross section

• Map with HAB (15°) and LAB (1°)



Building direction 200 µm

- Huge elongated grains in building direction
- Mainly low disorientations below 2° within grains



## **AM W Electron beam melting**



• Large overview map over entire slice



- Map size 14.9 x 7.9 mm<sup>2</sup>
- Morphological heterogeneity from spiral printing strategy
- 13 layers

• Rotated cube + <111> fiber texture



• Pole figures from center part





### AM CuCrZr Electron beam melting



- Cut parts from cubes 12x12x12 mm<sup>3</sup>
- CT
- Reconstructed pores



- Quantification of pores
  - Volume fraction 0.35 %
  - High density close to top surface
  - Pore size distribution



 $\bullet$  Note, missing pores below 4  $\mu m$ 



#### PM tungsten-fibre reinforced tungsten



- Specimens PRD-5.HFFM.PFM-T011
- Cut 2x1.5x12 mm<sup>3</sup>
- Unfortunately slightly to thick
- Computer tomography

- Quantification of wire fraction (in parts allowing reconstruction)
- •48% (51%)
- depends slightly on chosen resolution





Wolfgang Pantleon | SPA WPPWIE midterm meeting 2022 | Virtual | 29. August 2022 | 7



653±1 HV0.2

• Rolled plates 180 x 30 x 0.101 mm<sup>3</sup> supplied by Plansee SE (Andreas Hoffmann)



- Difficulties in cutting, preparation and annealing due to delamination ... solved!
- Microhardness on RD/TD with Vickers indent, load 200 g
  - Initial microhardness
  - -After annealing at 1300 °C for 4 days 531±2 HV0.2
- Annealing at 1300 °C, 1350 °C, 1400 °C done
- Continued with 1125 °C



# DTU

#### Cold-rolled tungsten plates doped with 80 ppm potassium



• Isochronal annealing



• Comparison with pure tungsten



• Isothermal annealing



# Cold-rolled tungsten plates doped with 80 ppm potassium



- Annealing at 1300 °C, 1350 °C, 1400 °C done
- Continuation to lower temperatures down to 1100 °C up to 75 days



- Recovery with logarithmic time dependence for very short time
- Apparent stagnation at 540 HV0.2
- Onset of growth not before 1800 h (75 days) at 1125 °C

# Cold-rolled tungsten plates doped with 80 ppm potassium

- XRD in-situ investigations in reflection at three different temperatures
- Strong {100}<011> texture only 200 and 400 peak assessable
- Annealing at 1050 °C, 1100 °C, 1150 °C under vacuum up to 24 h





- Almost perfectly following logarithmic time dependence  $FWHM = FHWM_0^* - M\ln(t)$
- Interpretation in terms of temperature dependence
- Profile analyse to clarify (main) origin for broadening



**Task specification** 

- Stefan Antusch 1. Additively manufactured W EBM EBSD performed, quantitative analysis pending
- 2. Powder metallurgical  $W_f/W$ Yiran Mao CT performed, promising, thinning of samples
- 3. Cold-rolled W 80 ppm potassium-doped Ex-situ annealing, in-situ annealing with XRD performed, detailed analysis
- 4. Additively manufactured W LBM Put on hold
- 5. Chemical vapor deposited W<sub>f</sub>/W Samples received, to be annealed
- 6. Cross rolled tungsten Awaiting new differently rolled plate









Johann Riesch

Alexander von Müller