

Simulation of 3D magnetic fields with GBS

<u>A. J. Coelho</u>¹, J. Loizu¹, P. Ricci¹, M. Ramisch²,

T. Boinnard ^{1,3}, Z. Tecchiolli ¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center

²Institut für Plasmaforschung, Universität Stuttgart

³Ecole Normale Supérieure Paris-Saclay

TSVV-3, meeting 21 September 2022

Tokamak boundary: broad-band turbulence and blobs

Tokamak boundary: broad-band turbulence and blobs

Stellarators and tokamaks show different boundary dynamics

 W7-X experiments show filaments bound to their flux surface and fluctuations normally distributed in the island region

Stellarators and tokamaks show different boundary dynamics

 W7-X experiments show filaments bound to their flux surface and fluctuations normally distributed in the island region

Stellarator turbulence simulations: current status

- Gyrokinetic δf codes (GENE-3D, Stella, XGC-S, ...) study the core
- Fluid code BOUT++ simulated seeded filament in a rotating ellipse [Shanahan, 2019]
- Progress in Grillix / Gene-(3)X
- GBS: global fluid simulation of a stellarator

Nuclear Fusion 2022 62 074004

GBS with 3D magnetic fields

- Set of equations for n, $T_e, T_i, V_{\parallel e}, V_{\parallel i}, \omega, \varphi$

- Electrostatic simulations
- Boussinesq approximation
- No neutrals

Today I show you an overview on:

1. Initial validation of the code in TJ-K

2. Simulation of a diverted tokamak with RMP's

TJ-K is a 6 field-period stellarator in Stuttgart

- $R_0 = 60 \text{ cm}$, a ~ 10cm
- Low-temperature plasma: $T_e{\sim}10~eV$, $T_i \leq 1~eV$
- $n \sim 10^{17} \text{ m}^{-3}$
- B ~ 70 mT
- Gases: H, He, Ar, D, Ne
- Plasma heated with microwaves at the UH resonance

G. Birkenmeier Dipl. Thesis

TJ-K is a 6 field-period stellarator in Stuttgart

- $R_0 = 60 \text{ cm}$, a ~ 10cm
- Low-temperature plasma: $T_e{\sim}10~eV$, $T_i \leq 1~eV$
- $n \sim 10^{17} \text{ m}^{-3}$
- B ~ 70 mT
- Gases: H, He, Ar, D, Ne
- Plasma heated with microwaves at the UH resonance

B generated with MAKEGRID

Plasma is limited in TJ-K

11

TJ-K is equipped with 2 multi-Langmuir probe arrays

GBS box is tailored to keep plasma limited in the same positions

Plasma heated with microwaves at the Upper Hybrid resonance

GBS simulation of a TJ-K Helium plasma

- Low m mode originated from the core
- Large structures detach from the mode

Several quantities considered for the validation

- Density, potential and radial flux power spectra
- Density, velocity and potential fluctuation levels
- Turbulent ExB flux
- Equilibrium electrostatic potential, electron temperature and density
- Equilibrium radial electric field

Several quantities considered for the validation

- Density, potential and radial flux power spectra
- Density, velocity and potential fluctuation levels

Turbulent ExB flux

Equilibrium electrostatic potential, electron temperature and density

Equilibrium radial electric field

EPFL Poloidal spectrum of density fluctuations

Simulation retrieves coherent mode detected in the experiment

Turbulent ExB flux compares well at $\phi=10^\circ$

Comparison of the turbulent ExB flux not so good at $\phi=30^\circ$

Equilibrium radial electric field is an order of magnitude different

Simulation of diverted tokamak with RMPs

Simulation of diverted tokamak with RMPs

current in RMP's coils

EPFL Main turbulence features don't change

Peak of the heat flux on divertor is reduced

25

EPFL

Final thoughts

- TJ-K: crucial understand the mechanism behind the setting of the equilibrium electric field
- Wall geometry might affect the comparison on the position of the peak of turbulent ExB-flux

 RMP's: Response of the plasma is not included, although not expected to be crucial in the edge

OTHER SLIDES

Boundary Conditions

$$\begin{split} V_{\parallel i} &= \pm \sqrt{T_e} F_T \times \mathcal{S}(R, \phi) \\ V_{\parallel e} &= \pm \sqrt{T_e} \exp\left(\Lambda - \eta_m\right) \times \mathcal{S}(R, \phi) \\ \omega &= -\cos^2(\alpha) \left[\frac{(\partial_s V_{\parallel i})^2}{F_T^2} \pm \frac{\sqrt{T_e}}{F_T} \partial_s^2 V_{\parallel i} \right] \\ \partial_s n &= \mp \frac{n}{\sqrt{T_e} F_T} \partial_s V_{\parallel i} \\ \partial_s \phi &= \mp \frac{\sqrt{T_e}}{F_T} \partial_s V_{\parallel i} \\ \partial_s T_i &= 0 \\ \partial_s T_e &= 0 \end{split}$$

EPFLNeutrals do not play a big role in
TJ-K

Pattern of the heat flux is not equal to the footprints lobes

