

TSVV3 status meeting, M. Wiesenberger, 21.9.22

A finite volume FCI scheme

1

Outlook

- 1. Advantages and downsides of existing schemes
- 2. Finite volume **schemes in 1D**
- 3. The **FCI scheme** as a locally fieldaligned finite difference scheme
- 4. Putting it all together: **finite volume flux coordinate independent scheme** FVFCI – numerical tests
- 5. Conclusions and future work

To be published:

M. Wiesenberger and M. Held, A finite volume FCI scheme, Journal (2022)

Discretize Navier stokes along given magnetic field

$$
\frac{\partial}{\partial t}n + \nabla \cdot \left(nu\hat{\boldsymbol{b}}\right) = 0
$$
\n
$$
\frac{\partial}{\partial t}(nu) + \nabla \cdot \left(nu^2\hat{\boldsymbol{b}}\right) = -\nabla_{\parallel}n + \nu_u \Delta_{\parallel}u \qquad \Delta_{\parallel}u := \nabla \cdot (\hat{\boldsymbol{b}}\hat{\boldsymbol{b}} \cdot \nabla u)
$$

Subset of both 3d drift- and gyro-fluid models if we **throw away all drifts and electro-magnetic fields** and only take ions Features: **advection, Burger's term** (makes shocks)**, pressure gradient** and **parallel diffusion**

D. Michels, et al,, Comput. Phys. Commun. 264 (2021) 107986. F. Hariri, et al, Plasma Phys. Control. Fusion 57 (5) (2015) 054001. A. Stegmeir, et al, Plasma Phys. Control. Fusion 60 (3) (2018) 035005

Existing FCI schemes

Advantages (over non-aligned schemes)

- **F** Accurately capture thin and **fieldaligned character** of turbulence with **low numerical diffusion**
- **F** Enables simulations of medium to large scale tokamaks (without FCI **saving scales with R_0^3**,

A. Stegmeir, T. Body and W. Zholobenko, submitted to CPC, 2022) Downsides

- **Boundary conditions** remain a challenge (also in this work)
- **Finite differences** not well suited for advection equations. Better schemes available in **literature on advection schemes** in 1d (shock-capturing, stability, conservative properties)
- Sometimes Feltor **simulations crash** seemingly for no reason

Goal in this work

Combine FCI with 1d finite volume schemes

4

Existing literature for 1d advection equations

Godunov type schemes

- \blacksquare conservative, shock capturing finite volume
- **Very unflexible** Riemann problem specific to set of equation needs to be solved to implement
- **Diffusion term awkward to** add
- R. LeVeque, Finite Volume Methods for Hyperbolic Problems, 2002.

Staggered finite volume scheme

grid for velocity/momentum is shifted by ½

- **Fi** Flexible and easy to implement
	- interpolation error when swapping from grid to staggered and back

R. Herbin, et al, ESAIM: M2AN 52 (3) (2018) 893–944.

Discontinuous Galerkin

- high order, no need to stagger, shock-capturing
- high order may be overkill for a low resolution scheme
- **Slope limiters hard to** combine with non Osher type time integrators
	- J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods 2008

DTU

Staggered finite volume in 1d

P. Gunawan, et al, Comput Geosci 19 (2015) 1197–1206.

Straight magnetic field $\frac{\partial}{\partial t} n = -\frac{\partial}{\partial x} (n u)$ $\frac{\partial}{\partial t}nu = -\frac{\partial}{\partial x}(nu^2 + n)$

$$
\frac{d}{dt}n_k = -\frac{1}{\Delta x}(\hat{q}_{k+1/2} - \hat{q}_{k-1/2})
$$

$$
\frac{d}{dt}(nu)_{k+1/2} = -\frac{1}{\Delta x}(\hat{f}_{k+1} - \hat{f}_k) - \frac{1}{\Delta x}[n_{k+1} - n_k]
$$

x

Fluxes are main ingredient in finite volume scheme

$$
\hat{q}_{k+1/2} := u_{k+1/2} \begin{cases} n_k + \frac{1}{2} \Lambda(\Delta n_{k+1/2}, \Delta n_{k-1/2}) & \text{if } u_{k+1/2} \ge 0 \\ n_{k+1} - \frac{1}{2} \Lambda(\Delta n_{k+3/2}, \Delta n_{k+1/2}) & \text{if } u_{k+1/2} < 0 \end{cases}
$$

$$
\hat{f}_k := q_k \begin{cases} u_{k-1/2} + \frac{1}{2} \Lambda(\Delta u_k, \Delta u_{k-1}) & \text{if } q_k \ge 0 \\ u_{k+1/2} - \frac{1}{2} \Lambda(\Delta u_{k+1}, \Delta u_k) & \text{if } q_k < 0 \end{cases}
$$

Velocity staggered

$$
\frac{d}{dt}n_k = -\frac{1}{\Delta x}(q_{k+1/2} - q_{k-1/2})
$$
\n
$$
\frac{d}{dt}u_{k+1/2} = -\frac{1}{\Delta x}(\hat{f}_{k+1} - \hat{f}_k) - \frac{1}{\Delta x}\left[(n_{k+1} - n_k) \frac{1}{2} \left(\frac{1}{n_{k+1}} + \frac{1}{n_k} \right) \right] + \frac{\nu_u}{n_{k+1/2}(\Delta x)^2} (u_{k+3/2} - 2u_{k+1/2} + u_{k-1/2})
$$
\nwith

$$
\hat{q}_{k+1/2} := u_{k+1/2} \begin{cases} n_k + \frac{1}{2} \Lambda(\Delta n_{k+1/2}, \Delta n_{k-1/2}) & \text{if } u_{k+1/2} \ge 0\\ n_{k+1} - \frac{1}{2} \Lambda(\Delta n_{k+3/2}, \Delta n_{k+1/2}) & \text{if } u_{k+1/2} < 0 \end{cases}
$$
\n
$$
\hat{f}_k := \begin{cases} \frac{1}{2} u_k \end{cases} u_{k-1/2} + \frac{1}{2} \Lambda(\Delta u_k, \Delta u_{k-1}) & \text{if } u_k \ge 0\\ u_{k+1/2} - \frac{1}{2} \Lambda(\Delta u_{k+1}, \Delta u_k) & \text{if } u_k < 0 \end{cases}
$$

We could choose any scheme really …

Advection schemes are diffusive (wave initial condition)

A fieldaligned coordinate system ρ , ζ , Φ

- Phi is fieldline label (we here choose Phi such that it **coincides with toroidal angle**) but other choices are possible
- Any **function can be pulled back** via

 $F(\rho, \zeta, \Phi) = f(R(\rho, \zeta, \Phi), Z(\rho, \zeta, \Phi), \varphi(\Phi))$

• b only has **one non-zero component**

$$
\nabla_{\parallel} F(\rho, \zeta, \Phi) = b^{\Phi} \partial_{\Phi} F
$$

$$
\nabla \cdot (\hat{\boldsymbol{b}} F)(\rho, \zeta, \Phi) = \frac{1}{\sqrt{G}} \partial_{\Phi} \left(\sqrt{G} b^{\Phi} F \right)
$$

$$
\Delta_{\parallel} F(\rho, \zeta, \Phi) = \frac{1}{\sqrt{G}} \partial_{\Phi} \left(\sqrt{G} b^{\Phi} b^{\Phi} \partial_{\Phi} F \right)
$$

In ρ , ζ , Φ we can discretize using finite differences

$$
\nabla_{\parallel}^{CC} F \to b_{k}^{\Phi} \frac{F_{k+1} - F_{k-1}}{2\Delta\Phi}
$$
\n
$$
\nabla \cdot (\hat{b}F)^{CC} \to \frac{\sqrt{G^{k+1}} b_{k+1}^{\Phi} F_{k+1} - \sqrt{G^{k-1}} b_{k-1}^{\Phi} F_{k-1}}{2\sqrt{G^{k}} \Delta\Phi}
$$
\n
$$
\Delta_{\parallel}^{CC} F \to \frac{1}{\Delta\Phi^{2}} \left[\frac{\sqrt{G^{k+1/2}}}{\sqrt{G^{k}}} b_{k+1/2}^{\Phi} b_{k+1/2}^{\Phi} (F_{k+1} - F_{k}) - \frac{\sqrt{G^{k-1/2}}}{\sqrt{G^{k}}} b_{k-1/2}^{\Phi} b_{k-1/2}^{\Phi} (F_{k} - F_{k-1}) \right]
$$

Downsides

- Fieldlines do not close on themselves so **Phi boundary condition** "somewhat awkward"
- Fieldaligned coordinates **not possible with X-point** Scott B., Phys. Plasmas 5, 2334 (1998)

FCI – only locally align

Two ingredients

- 1. Atlas: construct **locally fieldaligned coordinate systems** at each toroidal plane. Each system originates at a toroidal plane.
- 2. Find **coordinate transformations** to pull back from cylindrical (non-aligned) to curvilinear (aligned) coordinate system

 $F_{k+1}(\rho,\zeta) := F(\rho,\zeta,\Phi_{k+1}) = f(R(\rho,\zeta,\Phi_{k+1}),Z(\rho,\zeta,\Phi_{k+1}),\varphi_{k+1})$ $=:(\mathcal{T}_{\pm\Delta\varphi}f_k)(\rho,\zeta)$

Fieldline (and volume) equations

Volume must also be integrated for divergence

 $\nabla\cdot(\hat{\boldsymbol{b}}F)(\rho,\zeta,\Phi)=\frac{1}{\sqrt{G}}\partial_{\Phi}\left(\sqrt{G}b^{\Phi}F\right)$

DTU

 $F(\rho, \zeta, \Phi_{k+1}) = f(R(\rho, \zeta, \Phi_{k+1}), Z(\rho, \zeta, \Phi_{k+1}), \varphi_{k+1})$

Numerical coordinate transformation I Simple interpolation (in 1d)

Discontinuous Galerkin expansion **Finite Element** expansion

 $f_h(x) = \sum_{n=1}^{N} \sum_{k=0}^{P-1} f_{nk} l^{nk}(x)$, Any order

$$
f_h(x) = \sum_{n=1}^{N} f_n v^n(x)
$$
 Linear, cubic, ...

Insert coords

$$
F_h(X^{\pm}) = F_{nk}l^{nk}(X^{\pm}) = f_h(x(X_{nk}^{\pm}))l^{nk}(X^{\pm}) = f_{mq}l^{mq}(x(X_{nk}^{\pm}))l^{nk}(X^{\pm})
$$

Define matrix

$$
(I_{DG}^{\pm})_{nk}^{mq} := l^{mq}(x(X_{nk}^{\pm}) \qquad (I_{FE}^{\pm})_{n}^{m} := v^{m}(x(X_{n}^{\pm}))
$$

$$
F^{\pm} = I^{\pm} f
$$

$$
F^0 = f
$$

F. Hariri and M. Ottaviani, Comput. Phys. Commun., 184 (11) (2013) 2419–2429 A. Stegmeir, et al, Contrib. Plasma Phys. 54 (4-6) (2014) 549–554 M. Held, et al, Comput. Phys. Commun. 199 (2016) 29–39

Numerical coordinate transformation II
\n**Projection (in 1d)**
\n
$$
\bar{F}^{nk} := (S^{-1})^{ks} \int_{C_n} F_h(X^{\pm}) p_{ns}(X^{\pm}) dX^{\pm} = (S^{-1})^{ks} \int_{C_n} f_h(x(X^{\pm})) p_{ns}(X^{\pm}) dX^{\pm}
$$

"**Project onto base polynomial** in fieldaligned coordinate system (both dG and FE)" **Numerically integrate** using K discretization points for each integral

$$
F^{\pm} = P_{DG} I_{DG,F}^{\pm} f
$$

$$
F^{\pm} = S_{FE}^{-1} P_{FE} I_{FE,F}^{\pm} f
$$

We need to invert

$$
F^0 = P_{DG} Q_{DG} f = f
$$

$$
F^0 = S_{FE}^{-1} P_{FE} Q_{FE} f = f
$$

(tridiagonal) mass matrix

$$
F^{\pm} := P_{FE} I_{FE,F}^{\pm} f
$$
 A surprising alternative!!

$$
F^0 := P_{FE} Q_{FE} f = S_{FE} f
$$
^{S_FE is a smoothing Kernel!}

A. Stegmeir, et al, Comput. Phys. Commun. 213 (2017) 111 – 121

Table 3: Convergence Table for $K = 12$, $N_R = N_Z = N$ and finite element projection method Eq. (50).

1.99

 $-3.57e-09$

2.48

 $1.24e-06$

 $2.65e-03$

120

80

4.78e-03

1.99

4.88e-03

1.99

0.50

A finite Volume flux coordinate Independent approach

Formulate 1d FV scheme in aligned coordinates

$$
\frac{\mathrm{d}}{\mathrm{d}t}n_k = -\frac{\sqrt{\bar{G}^{k+1/2}}\bar{b}^{\varphi}_{k+1/2}\bar{q}_{k+1/2} - \sqrt{\bar{G}^{k-1/2}}\bar{b}^{\varphi}_{k-1/2}\bar{q}_{k-1/2}}{\Delta\varphi\sqrt{\bar{G}^k}}
$$

Value centred

Origin at non-staggered plane

$$
\bar{q}_{k+1/2} := \bar{u}_{k+1/2} \begin{cases} \bar{n}_k + \frac{1}{2} \Lambda(\Delta \bar{n}_{k+1}, \Delta \bar{n}_k) & \text{if } \bar{u}_{k+1/2} \ge 0 \\ \bar{n}_{k+1} - \frac{1}{2} \Lambda(\Delta \bar{n}_{k+2}, \Delta \bar{n}_{k+1}) & \text{if } \bar{u}_{k+1/2} < 0 \end{cases}
$$

Flux centred

Origin at staggered plane

$$
\bar{\bar{q}}_{k+1/2} := \bar{\bar{u}}_{k+1/2} \begin{cases} \bar{\bar{n}}_k + \frac{1}{2} \Lambda \left(\Delta \bar{\bar{n}}_{k+1}, \Delta \bar{\bar{n}}_k \right) & \text{if } \bar{\bar{u}}_{k+1/2} \ge 0 \\ \bar{\bar{n}}_{k+1} - \frac{1}{2} \Lambda \left(\Delta \bar{\bar{n}}_{k+2}, \Delta \bar{\bar{n}}_{k+1} \right) & \text{if } \bar{\bar{u}}_{k+1/2} < 0 \end{cases}
$$

In a second step transform to nonstaggered plane

$$
\bar{q}_{k+1/2} := \mathcal{T}_{+\Delta\varphi/2} \bar{\bar{q}}_{k+1/2} \quad \bar{q}_{k-1/2} := \mathcal{T}_{-\Delta\varphi/2} \bar{\bar{q}}_{k-1/2}
$$

DTU \mathbf{u}

Fieldaligned initialization (zero velocity, zero viscosity)

Pure interpolation always unstable => projection method for coordinate transformations

The magnetic field (aligned to boundary)

DTU
 $\begin{picture}(20,20) \put(0,0){\line(0,1){10}} \put(15,0){\line(0,1){10}} \put(15,0){\$

DTU
33

DTU

Without diffusion, dG scheme is unstable

Shock in perpendicular plane (zero velocity, zero viscosity)

All schemes exhibit spurious oscillations (dG does not even start)

DTU

Pressure gradient initial condition (should be zero)

Coordinate transformation **introduces spurious oscillations** around steep gradients **Do not vanish** for higher resolution

Parallel diffusion in **both density and velocity** equation needed

Perpendicular diffusion leads to **too restrictive CFL condition**

Conclusions

- **FV-FCI scheme** developed by **merging 1d finite volume scheme with FCI**
- For strong perpendicular gradients (parallel) **diffusion is necessary to stabilize** spurious oscillations caused by coordinate transformations
- Smoothing kernel in finite element interpolation seems to stabilize scheme
- **Flux-centred** approach seems to have best conservation properties

Future work

- Extension to **dG in parallel** direction seems straightforward
- Show that the **adjoint of pullback is a discretization of its inverse** (must translate to numerical expression).
- Leads to **exact conservation of mass**

 $({\cal T}_{+\Delta\varphi})^{\dagger}\equiv{\cal T}_{-\Delta\varphi}$

DTU

FCI on curvilinear grid

Table 4: Convergence Table for $K = 100$ and $N_{\xi} = 24$, using the linear projection method (50).

Compute all metric element in fieldaligned system

$$
\begin{pmatrix}\nR_{\rho} & R_{\zeta} & R_{\Phi} \\
Z_{\rho} & Z_{\zeta} & Z_{\Phi} \\
\varphi_{\rho} & \varphi_{\zeta} & \varphi_{\Phi}\n\end{pmatrix} = \begin{pmatrix}\n\rho_R & \rho_Z & \rho_{\varphi} \\
\zeta_R & \zeta_Z & \zeta_{\varphi} \\
0 & 0 & 1\n\end{pmatrix}^{-1} = \begin{pmatrix}\n\zeta_Z & -\rho_Z & (\rho_Z \zeta_{\varphi} - \zeta_Z \rho_{\varphi}) \\
-\zeta_R & \rho_R & (\rho_{\varphi} \zeta_R - \zeta_{\varphi} \rho_R) \\
0 & 0 & (\rho_R \zeta_Z - \zeta_R \rho_Z)\n\end{pmatrix} \frac{1}{(\rho_R \zeta_Z - \zeta_R \rho_Z)}
$$

Nemov scheme

$$
\frac{d\rho_R}{d\Phi} = -\left(\frac{b^R}{b^\varphi}\right)_R \rho_R - \left(\frac{b^Z}{b^\varphi}\right)_R \rho_Z
$$

$$
\frac{d\zeta_R}{d\Phi} = -\left(\frac{b^R}{b^\varphi}\right)_R \zeta_R - \left(\frac{b^Z}{b^\varphi}\right)_R \zeta_Z
$$

$$
\frac{dR}{d\Phi} = \frac{b^R}{b^\varphi} \qquad \frac{dZ}{d\Phi} = \frac{b^Z}{b^\varphi}
$$

$$
\frac{d\varphi_Z}{d\Phi} = -\left(\frac{b^R}{b^\varphi}\right)_Z \rho_R - \left(\frac{b^Z}{b^\varphi}\right)_Z \rho_Z
$$

$$
\frac{d\zeta_Z}{d\Phi} = -\left(\frac{b^R}{b^\varphi}\right)_Z \zeta_R - \left(\frac{b^Z}{b^\varphi}\right)_Z \zeta_Z
$$