

U^SPC Université Sorbonne Paris Cité

Dust production mechanisms

A. Michau and K. Hassouni

LSPM, Laboratoire des Sciences des Procédés et des Matériaux Université Paris 13, Sorbonne Paris Cité, CNRS (UPR 3407) 93430 Villetaneuse, France

19/10/2022

Example : W in West

The C3 campaign averaged net erosion rate is roughly ~0.1 nm s⁻¹, in the same range as what was found in AUG

=> What happened to this removed material ?

Observation of dust particles

In-situ visualisation of **micrometric particles** in ASDEX Upgrade

Rode et al. Phys. Scr. 2009 014024

But smallest particles cannot be seen

Ex situ obervation of NPs

Examples from C. Arnas (PIIM) M. Diez and E. Bernard (IRFM) in WEST

Filter holder connected to a vacuum dry pump

Part of dust produced during plasmas of 2020: 77 min of D plasmas (L mode) + 3 boronizations

Various shapes, sizes and chemical compositions (can contain all materials present inside the tokamak: W, Mo, Cu, Fe, Cr, Ag + O, B, N ...)

Inertial plasma-facing units (PFUs): graphite tiles with W coating of 15 μm

This can be carried out only between two campaigns : many plasma ignitions/disruptions

direct interpretation is difficult !

Simulation can help !

Observed dust microparticles

S. Petllon, et al

Nuclear Materials and Energy 24 (2020) 100781

Fig. 2. a to d SEM micrographs of particles collected with the Duster Box inside the WEST tokamak (scale bars are 5 µm). e SEM and EDS analysis of stainless steel and tungsten particles deposited on a sampling filter.

Different sizes of spherical micrometric particles observed

From C. Arnas (to be published) West C4 2019

- Spherical and regular shape : droplet ejected from molten metal (divertor) after an anomalous event (disruption/elm (?))
- Size depends on the event release of energy on the surface but maybe also on the local conditions that can be responsible for evaporation before solidification

Observed dust nanoparticles

UNIVERSITÉ PARIS 13

Observation in laboratory plasma

Production of NPs by sputtering under soft plasma conditions

Kumar et al PoP 20 (2017)

Lognormal distribution averaged diameter 30 nm Agglomerate of 5nm Nps Magnetron discharge

W sputtering

Different NPs production routes in laboratory plasmas

K. Ouaras et al PoP 2017

Interpretation

Nps are observed with and without droplets

- \Rightarrow Nucleation in a 'vapor cloud' around the droplet after disruption
- ⇒ Nucleation of Nps deposited on boronised flakes without droplet (formation without disruption)

In which conditions are they observed ?

- Disruptions
- Case of plasmas with high sputtering rate and moderate temperature that favour the molecular growth

Large quantities of Nps can be produced

Whatever their fate they could contribute to determine the nature of impureties and may therefore affect the plasma characteristics

Investigated scenari for Nps production

• Standard plasma conditions (mechanism 1) :

especially (semi)-detached plasmas with high Z radiative species

- Enhanced Sputtering followed by nucleation in the vapour

• Anomalous events (mechanism 2) :

melting and vaporisation

- produce droplets => micrometric particle (not considered)
- May produce Nps by nucleation in a supersaturated vapour (CNT ?)

Mechanism 1:What do we already have

'Standard Plasma conditions'

Aerosol model

- Need to solve for the particle charge (depend on plasma condition and size)
- Existing: Sectional model
 - Precise but CPU expensive -> preliminary analysis

- Multi-modal moment model can be easily used in integrated plasma modeling
 - → perform extensive studies

Prediction of the size distribution

Argon DC Discharge - graphite Cathode

- Conditions
 - A 14 cm gap
 - voltage $V_d \sim \underline{600 V}$
 - Current = 80 mA
 - Pressure = 0.6 mbar
 - Discharge Duration 5 mn
 - Volume ~1 L

Particle density 10⁸ cm⁻³ close to measurements

Molecular growth model

Issue :

W is ionised in the plasma

→ We need molecular growth model for W/Be system $W_n^{m+} + W^{p+} \rightarrow W_{n+1}^{(m+p)+}$ almost not known

Scenario 1 : Research methology

- Determine the stable neutral and charged W_n structure using eitheir MD with prescribed interaction potential or DFT
- Determine the interaction potentials for W^{p+}/W_n & W_n^{p+}/W systems
- Determine the coagulation cross sections by MD simulation using these potentials

Stable neutral and charged W_n structure First comparison between MD and DFT: the case of W_5

Stable neutral and charged W_n structure First comparison between MD and DFT : the case of W_{10}

MD-simulated annealing : heating up to 3000K and cooling to 0 K

EAM potential

E= 6,57 eV/atom

DFT (article Jiguang Du et al, 2009), method: Gradient corrected DFT

 $W_{10} - a(C_{3v})$

E= 5,44 eV/atom

 $W_{10}-b(D_{2h})$

E= 5,42 eV/atom

E= 5,42 eV/atom

Evaluation the impact of XC functionals and basis sets on the stable state optimization

Different XC functions

W ₂					
Exchange correlation function	Basis set	Bond energy (eV/atom)	Bond length (Å)		
B3LYP	LANL2DZ	-4.55 (-4.54 ^{1,2})	2.039 (2.039 ^{1,2})		
B3PW91	LANL2DZ	-4.93 (-4.93 ¹)	2.031 (2.031 ¹)		
LSDA	LANL2DZ	-6.46 (-6.48 ¹)	2.036 (2.037 ¹)		
B3P86	LANL2DZ	-5.01	2.028 (2.029 ^{2,3})		

Different basis set

W ₂					
Exchange correlation function	Basis set	Bond energy (eV/atom)	Bond length (Å)		
B3LYP	LANL2DZ	-4.55	2.039		
B3LYP	LANL08	-4.53	2.031		
B3LYP	LANL2TZ	-4.53	2.036		
cnrs S	UNIVERSITÉ PARIS	13			

Different exchange-correlation functions involve obtaining structures with different energies and bond lengths

The DFT basis set used does not affect the energies and bond lengths of the optimized structures

stable neutral and charged W_n structure

Interaction potential

Interaction potential

Scenario 2 : anomalous events

UNIVERSITÉ PARIS 13

Temperature evolution after disruption

Scenario 2: studies planned

To determine if nucleation is possible, we are developping **simple model** that solves for the **coupled phenomena** of :

- heat transfer near the wall
- melting/vaporization
- Screening/cooling of the vapour
- nucleation
- Aerosol dynamics

Simple models

detailed model

Thank you for your attention

Possible validation of 'soft conditions'

Kumar et al PoP 20 (2017)

Lognormal distribution averaged diameter 30 nm Agglomerate of 5nm Nps

Magnetron discharge

W sputtering

Possible validation of high heat flux conditions

Be nanoparticles obtained by Pulsed Laser Ablation in Gas Phase (PLA-Gas)

Images of a Be particle deposit obtained after cumulated PLA experiments in various gases (H_2 , He, Ne, Ar) at various pressure values (in the range 10^{-2} -7 mbar)

A. Palla - Papavalu , A. Bercea, C. Porosnicu, B. Butoi, et al. INFLPR

Determination of the most stable structures \Leftrightarrow targets during the collisions involved in the molecular growth

Use of classical MD is questionable

We make use of DFT and TD-DFT approaches With PPC

evaluation through stable state optimization. The case of W_2

XC functionals	Basis set	Bond energy (eV/atom) - this work	Bond length (Å) this work	Bond energy (eV/atom) Xue-Ling et al (2009)	Bond length (Å) Xue-Ling et al (2009)
B3LYP	LANL2DZ	-3.91	2.182	4.54	2.039
B3PW91	LANL2DZ	-4.20	2.171	4.936	2.031
B3P86	LANL08	-4.31	2.165		
LSDA	LANL2DZ	-6.51	2.036	6.48	2.06

Distance de séparation de paire (Å)

Step 1 : Evaluate basis sets and XC functionals evaluation through stable state optimization. The case of W₃

XC functionals	Basis set	Bond energy (eV/atom)	Bond length (Å)
B3LYP	LANL2 DZ	-5.36	$R_{12} = 2.253$ $R_{13} = 2.254$ $R_{23} = 2.454$
B3PW91	LANL2 DZ	-5.80	$R_{12}=2.241$ $R_{13}=2.242$ $R_{23}=2.441$
B3P86	LANL08	-5.96	$R_{12} = R_{13} = 2.232$ $R_{23} = 2.422$
LSDA	LANL2 DZ	-7.52	$R_{12} = R_{13} = 2.244$ $R_{23} = 2.428$

Step 1 : Evaluate basis sets and XC functionals evaluation through stable state optimization. The case of W₄

Distance de séparation de paire (Å)

Research methodology

- DFT approach makes use of :
 - A given basis set over which the wavefunction is expanded.
 - A prescribed form of exchange/correlation functionnal

- First step :determine the 'best' functional and basis set. Performed on stable state determination
- → Second step determine the whole PES W_n - W^+/W_n^+ -W
- → Third step : perform Molecular dynamic simulation

Step 1 : Evaluate basis sets and XC functionals evaluation through stable state optimization. The case of W₅

Distance de séparation de paire (Å)