

• CEA AND AIX-MARSEILLE UNIVERSITY CONTRIBUTION TO WP PWIE SP D ACTIVITIES

G. Ciraolo, N. Fedorczak, S. Di Genova, H. Yang , Y. Marandet, M. Raghunathan

French Alternative Energies and Atomic Energy Commission - www.cea.fr

Cea

SP D.1 "PLASMA BOUNDARY MODELLING": PLASMA BACKGROUND PARAMETERS OF WEST FOR MODELLING OF IMPURITY MIGRATION EXPERIMENTS (FOCUS ON D AND HE DISCHARGES)

electron density profile at the outer mid-plane

-SIM

---EXP

- - Separatrix

1.2

1.1

1.3

 For Deuterium plasma discharges : The set of 2D plasma backgrounds simulated with SOLEDGE-EIRENE has been increased with new cases compared with experimental data

Prad [MW/m³]

Example: WEST #56420

Parallel ion saturation current at the inner (left) and outer (right) divertor targets

- Extensive scans of divertor conditions (in connection with PhD Work by Hao Yang)
- At given power, scan gas fueling
- Continuous variation of steady-state divertor conditions
- divertor detachment well identified
- Power scan also performed,
- with light impurity (Oxygen)
- With and without drifts

Target temperature as a function of separatrix density (and wall geometry)

Cea Ohmic X-point radiator in WEST and SOLEDGE plasma background

WEST #56420 (ohmic scenario)

- → X-point localised visible radiation + specific signature on horizontal bolometry ?
- → Strong X-point density cloud (interferometry)

Commissariat à l'énergie atomique et aux énergies alternatives

Ohmic X-point radiator in WEST and SOLEDGE plasma background

Evolution of the radiated power as a function of upstream density in soledge simulations

Comparing simulation and experiments using also interferometry, bolometry etc.. signals

SP D.1 "PLASMA BOUNDARY MODELLING": PLASMA BACKGROUND PARAMETERS OF WEST FOR MODELLING OF IMPURITY MIGRATION EXPERIMENTS (FOCUS ON D AND HE DISCHARGES)

For **Deuterium plasma discharges** : The set of 2D plasma backgrounds simulated with SOLEDGE-EIRENE has been increased with new cases compared with experimental data

Example: WEST #56420

•

VN

Parallel ion saturation current at the inner (left) and outer (right) divertor targets

We have also started to simulate **Helium plasma backgrounds**, see a first example below

Commissariat à l'énergie atomique et aux énergies alternatives

Ceal Reaction setup in EIRENE for pure He plasmas

Setup:

Reaction Code	Reaction
1 AMJUEL H.4 2.3.9a	Iz: He + e ⁻ \rightarrow He ⁺ + e ⁻
2 HYDHEL H.1 5.3.1	CX He⁺ : He + He⁺ → He⁺ + He
2 HYDHEL H.3 5.3.1	
3 HYDHEL H.1 6.3.1	CX He ²⁺ : He + He ²⁺ \rightarrow He ²⁺ + He
3 HYDHEL H.3 6.3.1	
4 AMJUEL H.4 2.3.13a	RC: He⁺ + e⁻ → He
5 AMJUEL H.10 2.3.13a	
6 CONST H.2	Neutral-Neutral elastic collision

Large database for investigating He plasma backgrounds in WEST

LSN, 500kA

SP D.1 "PLASMA BOUNDARY MODELLING": PLASMA BACKGROUND PARAMETERS OF WEST FOR MODELLING OF IMPURITY MIGRATION EXPERIMENTS (FOCUS ON D AND HE DISCHARGES)

 For Deuterium plasma discharges : In order to investigate the role of toroidally localized objects, we are performing 3D transport SOLEDGE simulations with a non-axysimmetric wall

3D map of the electron density obtaind with a toroidally localized antenna limiter

Example of outer midplane and target profiles

Ongoing 3D plasma background transport simulations considering several positions of the antenna limiter

SP D.3 "Impurity Migration Modelling": see next presentation by Stefano Di Genova

• Modelling W erosion and migration with ERO2.0: an example on the role of Antenna limiter

- Investigation of the erosion of each « main PFC » (lower divertor, upper divertor, antenna limiter etc..) and in the contamination of core plasma
- Ongoing comparison between the results obtained from 2D and 3D plasma backgrounds