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General framework of PoliMi modelling activities

/\ Edge relevant plasma modelling:

2D fluid code: * Investigation of helium plasmas

SOLPS-ITER code Prf}‘;f:gsrgﬁsdma properties in tokamaks (AUG, under
2D multi-fluid model 3D Monte Carlo code: WP TE) and LPDs (GyM, WP PWIE)

Provides th_e sources for
\_/ B T G T  Investigation of negative
triangularity plasmain TCV (WP TE)

1. Erosion model: computes erosion MiCI’O-Scale mOfphO'Ogy eV0|Uti0n

(//ff
{
N

Inputs: plasma background

ERO2.0 code N @) by the plasma o studies (under WP PWIE):
. . fvl/‘./' 2. Monte Carlo: computes impurity ) ) )
3D Monte Carlo and impurity INPAAR transport  Comparison with analytical models
transport [T q'// 7 3. Erosion/deposition model: . . .
] computes impurities * Interpretative simulations of the
erosion/deposition . . .
4 Morphology evolution assessment erosion of experimental samples with
different roughness
2D plasm 3D PFCs structure X X i
backgrg Investigation of net and gross erosion
Global coupling of PFCs in tokamaks and LPDs:
of SOLPS-ITER and * Development of coupling procedure
ERO2.0 « Comparison with erosion

experiments
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Outline

1. | SOLPS-ITER modelling in GyM

2. Global ERO2.0 simulations in GyM
3. ERO2.0 erosion/deposition in AUG

4. ERO2.0 morphology evolution modelling
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GyM linear plasma device ((( o)

Stainless steel (SS): L=2.11m, @ =25 cm

Vacuum vessel: (optional: SS liner with W coating)

Pumping system: 2 turbopumps:
ping sy : Poase = 1E-8 mbar, pwork < 1E-3 mbar Magnetron @2.45 GHz Movable LPs
Working gas: H2, D2, N2, He, Ar, He+NHs and mixtures H0kWiew

Opt. cond. — lceil = 600 A, Psource = 1.2 kW, p= 0.10 Pa
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Helium databases and atomic reaction set )
T, (eV) 1oe Ne (MP) <1016
957 1 . 8 —
9 o HYDHEL 75 ° - () 1) 12—~ %
85| overestimates . A @ —
' electron AMJUEL and ADAS - £ 78 O
8 temperature! 6.5 give similar results | E 10 ; =
75| 6 i = b= ©
7 o ° 5.5 ° = E g 76 @
' = ) o
Jlux D+ (s1) Electron heat flux (W) - llg © &
%10 c 74 QO
3 140 o) +—
° o 135 o 4 8 g
) 72 =
25; o 130 2 1 8
125 o °© - T,
2" 120 g
HYDHEL and AMJUEL from http://eirene.de/ (D. (0) Default SOLPS-ITER (1) Default SOLPS-ITER + EHL,4 (2) Default SOLPS-ITER + CX

Reiter), ADAS from https://open.adas.ac.uk/

Objective: studying He plasma properties in GyM in order to provide a plasma background for ERO2.0 simulations

lonization (IZ) reaction rates from different databases (HYDHEL, ADAS and AMJUEL) can produce differences up to 20% in T, and n,,
Including electron neutral excitation (EHL,,4q) of He atoms (without resolving metastable states) leads to global increase in n,,

Including charge exchange (CX) reactions between He-He* and He-He** leads to increase in n,, consistent with the collisional drag, and
a reduction of T, . Important effect in GyM due to high neutral density

New default set of reactions and database for He plasma modelling with SOLPS-ITER
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SOLPS-ITER modelling in GyM (@)

Investigation of He metastable states (MS) in low-temperature plasmas

* Implementation of MS resolved model (ADAS rate coefficients, left figures) in the 0D model [Tonello E. et al, NF 2021],
already benchmarked with SOLPS-ITER.
* Results show small difference between metastable resolved and un-resolved models in GyM conditions (right figures)

Further development: Implementation of MS in EIRENE input file

11 n, (m-3) Te (eV)
- {ov) (m¥s™") (Eov) (eVmis™ 5 x10 15

—— lonization (CX on) ® Unrsesolved modsl
--- Recombination 4 Resolved modsl
—e— Metastable cross-coupling
—%— Radiative excitation 3

2

1 / (CX off)

0! | 0

0 500 1000 0 500 1000
LyeV) Ly V) rn.puﬂ“ (sccm) rrr._puﬂ' (SCCI‘T])

Fig. Reaction rate coefficients (ADAS) for He with metastables resolved (left). Results of 0D model resolved vs. un-resolved (right).
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SOLPS-ITER modelling in GyM @)

(

Benchmark of SOLPS-ITER simulations with experimental LP data from GyM
¢ Optimisation of simulation input (recycling coefficients, D, P,,;) to obtain good agreement with GyM experimental
Langmuir probes (LP) data in the full machine configuration

pumping surface pumping surface
| I

Fig. a) Setup for benchmark of experiments
with SOLPS-ITER. b) Helium gas pressure.
c) Comparison between SOLPS-ITER
simulations and exp. LP results.

b)

PP =0.092Pa peP = 0.09Pa

A

0.06 0.07 0.08 0.09 0.1 0.11

He pressure (Pa)

Radial position (m) Radial position (m)
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SOLPS-ITER modelling in GyM

/ext steps: \

Experimental LP data show effect of sample holder presence
on plasma density beyond it (LP 5U)

* Up to now, SOLPS-ITER could not simulate plasma at high
radius and beyond sample holder in this configuration

* B2.5 extended mesh could allow this modelling

\ (SOLPS-ITER training workshop @KU Leuven next Novemby

Sample

holder 5U

(i) Full machine
(no sample holder

(ii) Sample holder
inserted
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(i)  Full machine configuration

(ii) Sample holder configuration
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Outline

1. SOLPS-ITER modelling in GyM

2. | Global ERO2.0 simulations in GyM

3. ERO2.0 erosion/deposition in AUG

4. ERO2.0 morphology evolution modelling
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Global ERO2.0 simulations in GyM (@)

CY

ERO2.0 simulation volume

f
(7N

—

Objective: Exploiting the coupling between SOLPS-ITER and ERO2.0 in a linear plasma
device to study erosion of internal walls and impurity migration in GyM helium plasma

%
=)
>

SOLPS nyy,.. (M)

)

(b)

ERO2.0 2D wall boundary

ERO2.0 3D structures

>>

(a) 3D plasma background for ERO2.0

© * 2D SOLPS-ITER plasma background interpolated on the
(x, y) plane of 3D ERO2.0 mesh

* Axial symmetry is assumed

' Bushings

(b) 2D ERO2.0 domain boundary

e 2D SOLPS-ITER plasma background is extrapolated up to
this boundary

e Axial symmetry is assumed

(c) 3D GyM wall structures

* Used by ERO2.0 to assess erosion/deposition
of walls (bases and lateral wall of vacuum
chamber and bushings)

Lateral wall

* Drawn in CAD: no axial symmetry required

Basis
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Global ERO2.0 simulations in GyM ®)

(((E

Varied parameters:

GyM vacuum chamber material Bias voltage applied to the walls

Bi It Vv
.

6 26 29
C Fe Cu W °

carbon iron copper tungsten - 20
-100

l l - 200

Common fusion Proxy of other
material v ligants in GyM v
Main component steel Common fusion
of GyM steel material
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Global ERO2.0 simulations in GyM ((7‘?)

Main results: 6
* Lowest erosion for W (not eroded for V... < 110 V), highest for Fe C
. . . . - carbon
* Bases and bushings are main erosion sources, lateral wall main deposition zone
* Deposition on lateral wall generally increases at high V,,, 29
Gross erosion Deposition copper
__10%° 100 % ; ; ETY RN ESY EeY
@ [7] Lateral wall
w -
S 18 r-‘.*'-'-:'.:-_‘. """"""""" ' D Bushings
2 10 i B Bases
‘% 161 «’. 50 %
- 10~
% CX effect —
= 144 — | |=Es —
(1T} 10 ¢ s | —
0 HEEE | ]|
0 50 100 150 200 0 20100200 O 20 100200 O 20 100200 O 20 110 200

Bias (V) Bases and bushings biasing voltage (V)
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Global ERO2.0 simulations in GyM (@)
[ "Under review for Nuclear Fusion |
Angular distribution of erosion is studied on lateral surfaces of bushings: il rfv’fw_foi eear raeion
a. B impinges on lateral side of GyM bushings: full distribution for He plasma ions incidence angle (no sheath-tracing
model is used)
b. poloidal plot shows erosion normalised to the peak values for each material

The angular position of the peak depends on two opposite effects: Y increases towards grazing incidence (higher erosion);
the flux decreases towards grazing incidence (lower erosion)

The variation of Y (6) depends on the material: e.g. for W mild Y (8) dependence = maximum erosion at normal incidence

= 90°
(9 ) Normalised erosion 6 29
B 0 C Cu
Late ral Wa” Lateral Wa“ 30 30 carbon copper
< A 60 60 1
—_ D =
B O B® ” ! " R
<A R
60

A-A — N
0 20 40 60 80
30 30 0

0
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Global ERO2.0 simulations in GyM (@)

Angular distribution of erosion is studied on lateral surfaces of bushings: L ___________ -

a. B impinges on lateral side of GyM bushings: full distribution for He plasma ions incidence angle (no sheath-tracing
model is used)

b. poloidal plot shows erosion normalised to the peak values for each material

The angular position of the peak depends on two opposite effects: Y increases towards grazing incidence (higher erosion);
the flux decreases towards grazing incidence (lower erosion)

The variation of Y (6) depends on the material: e.g. for W mild Y (8) dependence = maximum erosion at normal incidence

6 = 90° | |
( ) Normalised erosion 6 29
- 0 C Cu
Lateral wall Lateral wall 30 30 carbon copper
< A 60 ommeme 60 1 ! ~ o0 N

Further development: Exploiting SOLPS-ITER plasma background with extended B2.5 grid to include presence
—.| of sample holder in the simulation volume and to study erosion/deposition of samples exposed in GyM

J
h _/
z =
A-A 60 60 ob— o N\J
0 20 40 60 80

30 30 o
0
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Outline

1. SOLPS-ITER modelling in GyM

2. Global ERO2.0 simulations in GyM

3.| ERO2.0 erosion/deposition in AUG

4. ERO2.0 morphology evolution modelling
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Previous AUG erosion/deposition experiments

/
(/

* Eight L-mode D-plasma discharges (#35609-35617)
* Measured erosion of Mo and Au markers close to outer strike point (OSP)

* ERO1.0 modelling to simulate markers erosion/deposition in small volume around markers

W, C, B and N impurities considered in plasma for ERO modelling

- Objective of our work: Exploiting ERO2.0 extended simulation volume to
estimate role of impurities eroded from FW on divertor markers erosion

/r;)‘ T T T T —
£ 00 — »
|:'|:| £ o . g
Separatrix 9 057 ,%0“"0_0 ] =
© » /
g P 5
7 § 1.0 oy D
2 / 1 9
w / 8
8 151 ] s |
c
2 S .12} /
& -2.01 / ] 8 -=- Experimental
i / 5 i n (5%5 mm?)
T -2.5] [ [Fe—Au, 5x5 mm? = 18 / Z,=193 |Z,7247
T / —=— Mo, 5x5 mm? c s . ——BC |-—=-BC |
. . Z —o— Mo, 1x1 mm? o . High-T| —=— High-T
ERO simulation 3.0 +— : —_ s 20 R RS 4% - g,
volume 20 0 20 40 60 80 - 80
Poloidal distance from strike point (mm) Poloidal distance from strike point (mm)
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EROZ2.0 erosion/deposition in AUG ()
Simulations setup 1.5
* D plasma from SOLPS-ITER with C (1.0%) and W (0.01%) impurities
« 80° sector with periodic BC 1
e 3D full-W wall divided into 6 parts to distinguish impurity sources

Bl Upper wall
* Inner core boundary at 0.7 r.,, 0.5¢ 1 T

) . Inner divertor
* Single time step of 1s T . =Inner wall
; | Il Outer divertor

B Outer wall
Analyzed parameters 05} | —— Core boundary
* Plasma shadowing effects (- 50% of erosion) ~ ~-ieparatrix
* Migration studied from each FW component individually -1t
* Extrapolation method of SOLPS-ITER solution to the wall

-1.5 . . .

* Plasma w/o W impurities 1 1.5 2 2.5

. . R [m]
*  Multiple time steps
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ERO2.0 erosion/deposition in AUG @)

Contribution to divertor erosion from different PFCs

3 different simulations: a) Upper wall erosion, b) Inner wall erosion, c) Outer wall erosion

Highest contribution to outer divertor erosion due to

plasma, W particles eroded from outer wall contribute Core

to about 6% (only outer wall considered in the following) reflection [%]

5.7 46.8 12.7

Highest probability of reaching core for inner wall W impurities

Erosion rate [atoms/s]

6

w10 Outer Divertor erosion 1016
Il Traced particles
Plasma
10
o
[1]
10" 3
<
3
108
6.0% )
0.6% 0.8% 1012
a. b. C. R [m] R [m] R [m]
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ERO2.0 erosion/deposition in AUG ()

Effect of particle charge on impurity migration

W particles eroded from outer wall

Lower ionized W impurities more localized near production areas

Particles in higher ionization states can migrate towards different PFCs (main contributors to outer divertor erosion)

wWo

W1+ W2+ W3+ W4+ 10

X
— 10

6

N

| R [m] | | R [m] | | R [m] ) ) R [m]
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ERO2.0 erosion/deposition in AUG

Effect of extrapolation method of SOLPS-ITER plasma to 3D walls

4 different simulations, varying from constant extrapolation to exponential decay with 10

different characteristic lengths A (10, 1 and 0.1)

Outer wall erosion deeply affected by extrapolation method (about factor 200
reduction, compared to < factor 3 for outer divertor)

As a consequence, contribution of outer wall impurities on divertor erosion

decreases at lower A

Probability of reaching core boundary for outer wall impurities increases at lower A
due to lower plasma density and temperature at edge

Divertor erosion rate
[10%6/m? s]

Outer wall erosion

rate [1016/m? s]

Core reflection [%]

[oa)

Erosion rate [atoms/s]
= (=2

b

0

%101  Outer Divertor erosion

-Traced particles
- Plasma

1R

Uﬂ“’

26.4 23.2 7.90

12.7 14.8 32.8

0.14

215

Gabriele Alberti | WP PWIE 2022 Review Meeting / 2023 Planning Meeting | 19/10/2022 | Page 20



ERO2.0 erosion/deposition in AUG @)

U=

Effect of W impurities in the plasma

w/o W in plasma with W in plasma

* Removing W impurities (0.01%) in D plasma deeply Divertor erosion

affects divertor erosion (> factor 10 reduction, rate [1016/m? s] 0.24 3.46

compared to < factor 2 for outer wall) Outer wall erosion e s
* Asaconsequence, the contribution of W particles rate [10%°/m? s] ' '

eroded from outer wall to divertor erosion W from FW " 5

increases (14.4% against previous 6.0%) contribution [%]

Effect of multiple time steps

Up to 10 time-steps for a total of 10s discharge simulated

* No significant differences observed for the reported global results (local effects observed, especially regarding
erosion of plasma shadowed areas)
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ERO2.0 erosion/deposition in AUG {f‘)

Molybdenum (Mo) as outer divertor material

"~ Waiertor | Mo divertor
* Mo presents 30 times higher erosion wrt W, T ——

especially due to D-plasma rate [10%6/m? s] 0.24 8.27

¢ Almost doubled erosion due to W from FW for Mo W from FW

contribution [%] 14.4 0.8

* Erosion % due to FW W decreases for Mo

100 ---DonW
0 Fl—Won W |
===DonMo|
—W on Mo

(¢ )

urther developments:

g

yield

» * Comparison with experimental data and ERO1.0
modelling

\° Consider also erosion from CX neutrals

J

10—6

10 10° 10"
energy [eV]
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Outline

1. SOLPS-ITER modelling in GyM
2. Global ERO2.0 simulations in GyM

3. ERO2.0 erosion/deposition in AUG

4.|ERO2.0 morphology evolution modelling
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ERO2.0 morphology evolution modelling: experimental results @)

Motivation : Previous work showed the dependence of ERO2.0 morphology
evolution on few numerical parameters, e.g. time step and mesh resolution

Samples production and exposure

* pyramidal surfaces produced by chemical etching of Si wafers (@ ISTP-
CNR) with different average surface roughnesses (300-600-900 nm)

* Deposition of compact W coating by means of HiPIMS technique
(@ PoliMi)

* New exposure @ 350 eV to enhance samples erosion

Before and after exposures

* weighing to evaluate erosion using balance @ CNR-Mi 30 80 150 200 250
* AFM for topography evolution @ ISTP 3

Below and above sputtering threshold for

*  SEM morphology evolution @ PoliMi He on W (105-110 eV)

* SEM statistical analysis of coating thickness variation in
cross section @ PoliMi
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ERO2.0 morphology evolution modelling: experimental results ((7 ‘?)

Net erosion statistical analysis
* AQsg, >As, ., as expected in literature
*  DSges > AS eyt POSSible deposition of sputtered

60.7 49.4 34.6

particles from faces to valleys 17.0 299 35 9
* Further work needed to reduce uncertainty | | ’

0.010
350 eV o
0.005’ 3506V o -’
— T 350 eV 200eV o |
+w 0.0015¢ Y from mass loss data Am ¢
2 .
~
= | ey e L S
et “\.'_ ------------------ e
S 0.0010 il
250 eV
0.0005 @~
e 8 ! s A 150 eV o
0.0000
& & T & T &8
& O 2 O 2
P qA‘t g Q\\( o qﬁ( ) e
@ s P 7 N
QJA QJD \@0\0
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ERO2.0 morphology evolution modelling: ERO2.0 modelling ((7 ‘?)

* ERO2.0 overestimates erosion of all samples, in agreement with available sputtering yields

* ERO2.0 predicts more morphology variations than observed in experiments (fig. b)

Y ough/ Yriar Well reproduces experimental data for all roughnesses (fig. c)

Strategy: fixing physical parameters for quantitative agreement with flat surface and
vary numerical ones to morphology evolution of pyramids

a) AFM-topography
(R, =900 nm)

Z [m|
X107
‘

b) ERO2.0 morphology
evolution

—0s

6L|—1000 s
2000 s
55 —3000 s

¥ - 150 nm

l- 500 nm

0 5 10 15
X [pm]

20

¢) Yrougt/Ysiar cOmpared to
experimental data

1.2t
1or (W
I o Mass loss data
[ -
> B
= N N
osf h
350eV 1\
0.4} ERO2.0
350 eV
0.2 i J}I! H i
& & O SO "&c‘\\
oo G A AN B AP
o 2 XL Eapot Rty
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