

First measurements of Tritium by ns-LIBS – Perspectives for ps-LIBS

Arnaud BULTEL[‡], Aurélien FAVRE, Vincent MOREL

CORIA, UMR 6614, CNRS-Normandie Université-INSA de Rouen, 76801 St-Etienne du Rouvray cedex, France

[‡]arnaud.bultel@coria.fr

Christian GRISOLIA, Mickael PAYET, Stéphane VARTANIAN, Elodie BERNARD

IRFM, CEA Cadarache, 13108 Saint-Paul-lèz-Durance, France

Sébastien GARCIA-ARGOTE

SCBM, CEA Saclay, 91190 Gif-sur-Yvette, France

Sabina MARKELJ, Miha CEKADA

JSI, 1000 Ljubljana, Slovenia

LIBS ³ H platform for T measurements	Variable	Values
	$E_p(mJ)$	25 (after L_0)
	$\tau_p(ns)$	6.9
Lens L_0 2 (i)	$\lambda_p(nm)$	532
D comple $\int \sqrt{2} 2 \omega_0$	D(mm)	10
Sample	f(cm)	10
Laser λ_p φ_{las}	$\omega_0(\mu m)$	55
x' +	\mathcal{M}^2	16.4
Pulse duration τ_p	$\varphi_L(W m^{-2})$	3.7×10^{14}
$\leftarrow \cdots \rightarrow \pi \omega_0^2$	$F_L(J \ cm^{-2})$	260
$f = 2 Z_R = 2 \frac{\sigma}{\lambda}$		

« Top-hat » laser beam 🛛 🌌

The tritiated sample...

- Avoid the formation of an oxide layer limiting the diffusion
- Favor a high T concentration at z = 0
- Diffusion favored in Si by high temperature level $T \cong 300^{\circ}C$

	Diffusion of H at 20 d	egrees C	Diffusion of T at 20 degrees C $$		
Material X	$D_{H,X} \ ({ m m}^2 \ { m s}^{-1}) \ [{ m Ref.}]$	$\delta_{H,X}$ (m)	$D_{T,X} \ (m^2 \ s^{-1}) \ [Ref.]$	$\delta_{T,X}$ (m)	
Pd	2×10^{-15} (thin layer [45])	$2.7 imes 10^{-6}$	1.9×10^{-11} [48]	$2.6 imes 10^{-4}$	
Ti	$1.6 \times 10^{-15} [46]$	$2.4 imes 10^{-6}$	2.0×10^{-15} [46]	$2.7 imes 10^{-6}$	
Si	$8.0 \times 10^{-19} [34, 47]$	5.4×10^{-8}	$8.0 \times 10^{-19} [34, 47]$	5.4×10^{-8}	
	Diffusion of H at 300	degrees C	Diffusion of T at 300	degrees C	
Matorial X	D_{1} (2 -1) [D f]	c ()	0 1		
material A	$D_{H,X}$ (m ² s ⁻¹) [Ref.]	$\delta_{H,D}$ (m)	$D_{T,X} \ ({\rm m}^2 \ {\rm s}^{-1}) \ [{ m Ref.}]$	$\delta_{T,D}$ (m)	
Pd	$D_{H,X}$ (m ² s ⁻¹) [Ref.] 2.9 × 10 ⁻⁹ [43, 44]	$\delta_{H,D}$ (m) 3.2×10^{-3}	$\frac{D_{T,X} \text{ (m}^2 \text{ s}^{-1}) \text{ [Ref.]}}{2.9 \times 10^{-9} \text{ [43, 44]}}$	$\delta_{T,D}$ (m) 3.2×10^{-3}	
Pd Ti	$ \begin{array}{c} D_{H,X} \ (\text{m}^2 \text{ s}^{-1}) \ [\text{Ref.}] \\ \hline 2.9 \times 10^{-9} \ [43, 44] \\ \hline 4.3 \times 10^{-11} \ [46] \end{array} $	$\delta_{H,D}$ (m) 3.2×10^{-3} 4.0×10^{-4}	$D_{T,X} (m^2 s^{-1}) [Ref.]$ $2.9 \times 10^{-9} [43, 44]$ $3.4 \times 10^{-11} [46]$	$\delta_{T,D}$ (m) 3.2×10^{-3} 3.5×10^{-4}	
Pd Ti Si	$\begin{array}{c} D_{H,X} \ (\mathrm{m^2 \ s^{-1}}) \ [\mathrm{Ref.}] \\ \hline 2.9 \times 10^{-9} \ [43, 44] \\ \hline 4.3 \times 10^{-11} \ [46] \\ \hline 5.1 \times 10^{-14} \ [34, 47] \end{array}$	$\delta_{H,D}$ (m) 3.2×10^{-3} 4.0×10^{-4} 1.4×10^{-5}	$D_{T,X} (m^2 s^{-1}) [Ref.]$ $2.9 \times 10^{-9} [43, 44]$ $3.4 \times 10^{-11} [46]$ $5.1 \times 10^{-14} [34, 47]$	$ \frac{\delta_{T,D} \text{ (m)}}{3.2 \times 10^{-3}} \\ \frac{3.5 \times 10^{-4}}{1.4 \times 10^{-5}} $	

The tritiated sample modified by the laser flux...

Pd-Ti/D-Si

Structure of sample modified by diffusion of T (and H)...

Ablation rate $\approx 400 \ nm/pulse$

Emission of the laser-induced plasma on the tritiated sample...

ΤïΤ

Ë

Si

ĒĒ

H

Ē

Π_σ

ΈĒ

ΈË

Ë

 10^{12}

6

Focus on the emission of T...

- No influence of the wings of the laser pulse (shot2: no longer Ti lines)
- Tritium has diffused in depth
- H has further diffused (higher diffusion coefficient)

Rebuilding of the emission of the **Tritiated plasma**...

Criterion		Year - Ref	$n_{e,min}(S)$	Si) $n_{e,min}(Ti)$	$n_{e,min}(\text{H-T})$	$n_{e,min}(Ar)$
Wilson		1962 - [71]	$] 2.9 \times 10^{4}$	1.7×10^{24}	1.4×10^{25}	2.1×10^{25}
Griem		1963 - [72]	$] 1.1 \times 10^{4}$	1.1×10^{20}	9.5×10^{21}	1.4×10^{22}
McWhirter		1965 - [73]	$] 1.6 \times 10^{4}$	6.4×10^{19}	1.5×10^{23}	2.3×10^{23}
Drawin		1969 - [74]	$] 1.2 \times 10^{4}$	1.3×10^{17}	9.9×10^{21}	8.1×10^{22}
Hey		1976 - [75]	$] 9.1 \times 10^{4}$	6.9×10^{21}	1.2×10^{24}	1.8×10^{24}
Fujimoto and McWhirter		1990 - [76]	5.5	$\times 10^{23}$	
	<i>c</i> :					
Element	Sı	11	Н, Т	Ar		
$E_1 - E_2$ (eV)	0 - 4.930	0 - 2.396	0 - 10.199	0 - 11.624		
f_{12}	2.10×10^{-1}	1.70×10^{-2}	4.16×10^{-1}	6.75×10^{-2}	• Criteria	globally fullfilled
Ψ_1	1.33×10^{-4}	9.34×10^{-3}	1.93×10^{-8}	1.77×10^{-9}	• Element	Alinea an an ab ta na ab 13
$\alpha^{CR} (\mathrm{m}^3 \mathrm{s}^{-1})$		4.10×10^{-17}			• Elapsed	time enough to reach Li
τ_i (s)	2.60×10^{-6}	2.22×10^{-7}	1.87×10^{-2}	1.43×10^{0}		
τ_r (s)		2.44×10^{-6}				
τ_p (s)	1.26×10^{-6}	2.04×10^{-7}	2.44×10^{-6}	2.44×10^{-6}		
λ_g (m)	$2.38 imes 10^{-7}$	$4.67 imes 10^{-8}$	$1.46 imes 10^{-4}$	$1.36 imes 10^{-4}$		

 $n_e pprox 10^{22} m^{-3} \ T_e pprox 8000 K$

Rebuilding of the emission of the **Tritiated plasma**...

MERLIN – MultiElemental Radiative equiLibrium emissioN...

Perspectives...

• Perform the T density estimation by autoradiography

- Compare the composition by the present CF-LIBS methodology implementation with autoradiography
- Redo the tritiation on other types of samples (W and Be)
- Perform the T measurement using the ps-LIBS
 - $\,\circ\,$ To reduce the ablation rate
 - \circ To decrease n_e and increase the isotopic discrimination capacity
- Tests on samples containing D and T to test the isotopic separation

Many thanks!!!