

Runaway Electrons damage on plasma facing components in JET fusion device

I. Jepu, G.F. Matthews, A. Widdowson, J. Likonen, C. Porosnicu, O.G. Pompilian L. Chen, R.A. Pits, S. Ratynskaia and JET Contributors

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Background

Fusion tokamak performance

Higher plasma current = POTENTIAL HIGHER DAMAGE to the reactors due to the plasma disruptions

[1] Pitts, R., R. Buttery, and S. Pinches. 2006. Fusion: The way ahead. Physics World 19: 20-26

I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

Background – typical JET operation Example of a JET pulse (#98855)

Neutron Rate

- ne (LIDAR, 2.95m

Te (KK1, 2.95m)

65

65

- ne (HRTS, 3.0m)

Te (LIDAR, 2.95m)

55

s

60

Zeff (Horizontal)

60

50

Equilibrium profile

I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

Plasma disruption

Termination of plasma with rapid loss of thermal and magnetic energy

HUGE thermal and mechanical loads on the structure

Plasma disruption 1000 DP 1 DP 8 Termination of plasma with rapid loss of [2] KL7 IR camera reading on DP8 R Cam T (°C) thermal and magnetic energy 500 **HUGE** thermal and mechanical Έ 0 loads on the structure a) 275 DP 4A **Consequences of the disruptions** ູ່ວ ວ - Thermal loads/Fast melting and -2electromagnetic forces 84832 t=48.51s b) 51.57s 175 3 50 52 54 56 58 60 62 Major radius [m] Time (s)

Plasma disruption Termination of plasma with rapid loss of thermal and magnetic energy

HUGE thermal and mechanical loads on the structure

Consequences of the disruptions

- Thermal loads/Fast melting and electromagnetic forces

[2] I. Jepu et al, Nucl. Fusion 59 (2019) 086009
[3] G.F. Matthews, et al., Phys. Scr. T167 (2016) 014070 (7pp)
[4] G. Sergienko et al., Phys. Scr. T128 (2007) 81–86
I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

Plasma disruption

Termination of plasma with rapid loss of thermal and magnetic energy

HUGE thermal and mechanical loads on the structure

Consequences of the disruptions

- Thermal loads/Fast melting and electromagnetic forces

- High energy Runaway Electrons (RE)

Serious threats to future tokamaks

Background – JET REs

Plasma disruption

Termination of plasma with rapid loss of thermal and magnetic energy

HUGE thermal and mechanical loads on the structure

Consequences of the disruptions

- Thermal loads/Fast melting and electromagnetic forces

- High energy Runaway Electrons (RE)

Serious threats to future tokamaks

Background – JET REs

Plasma disruption

Termination of plasma with rapid loss of thermal and magnetic energy

HUGE thermal and mechanical loads on the structure

Consequences of the disruptions

- Thermal loads/Fast melting and electromagnetic forces

- High energy Runaway Electrons (RE)

Serious threats to future tokamaks

REs damage to JET PFC – Be limiter tile

REs damage to JET PFC – Be limiter tile

Laser 3D profiling

I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

REs damage to JET PFC – Be limiter tile Laser 3D profiling

REs damage to JET PFC – Be limiter tile Modelling

-0.6

0.120

-0.120

REs damage to JET PFC – Be limiter tile Cutting

REs damage to JET PFC – Be limiter tile *Cutting

*Details on cutting performed at IAP to follow

I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

REs damage to JET PFC – Be limiter tile

*performed at IAP

REs damage to JET PFC – Be limiter tile

*performed at IAP

I. Jepu | RE impact on JET PFC | SPE meeting | Zoom | 20.10.2022

REs damage to JET PFC – Be limiter tile TO DO

REs damage to JET PFC – Be limiter tile

Position of the engraved ID will show sample orientation

To DO

- Cutting of selected castellations;
- IBA analysis in poloidal, toroidal and "depth" direction;
- SIMS analysis;
- **SEM/EDX** analysis

Sectioning and preparation of samples from metallic JET components at IAP. Microscopy investigations and sample distributions to other laboratories

I. Jepu, A. Widdowson, Y. Zayachuk, P. Coad UKAEA C. Porosnicu, C.P. Lungu, B. Butoi, O. G. Pompilian, C. Staicu, V. Zaroschi IAP (Institute of Atomic Physics, Bucharest, Romania)

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

2022 Sample preparation and cutting – Be tile ✓ Cutting

For temperature monitoring in real time a FLIR[®] E-Series Advanced Thermal Imaging Camera, (+/- 1 °C ; 20-900 °C) was used

I. Jepu / C. Porosnicu | IAP activities | SPE meeting | Zoom | 20.10.2022

2022 Sample preparation and cutting – Be tile ✓ Optical Microscopy

2022 Sample preparation and cutting – Be tile ✓ Optical Microscopy

C6R5	C6R6	C6R7	C6R8

2022 Sample preparation and cutting – W lamellae

2022 Sample preparation and cutting – W lamellae

2022 Sample preparation and cutting - W coated CFC → exposure to He plasma in the PSI2 plasma linear device

3. Choose your probe size and related maximum amount²;

(2) Probes are equally spread on Plasma maximum intensity circle.

Probe Main dimensions (typical & range)	A (mm)	B (mm)	C ⁽³⁾ (mm)	D, D' (mm)	Maximum amount per mounting
5mm Probe	5	2	3	1	12
10mm Probe	10	2	3	1	8
15mm Probe	15	2	3	1	4
20mm Probe	20	2	3	2	2

I. Jepu / C. Porosnicu | IAP activities] Sr E meeting 20010 20.10.2022

2022 Sample preparation and cutting – W coated CFC

25.00 K X

Width = 4.573 µm

WD = 5.1 mm

9 Jun 2022

Rasinski

Detailed results presented by M. Rasinski et al. WP PWIE: SP B Tuesday 18th of Oct 2022

IAP activities | SPE meeting | Zoom | 20.10.2022

2022 Sample preparation and cutting – W coated CFC

Detailed results presented by M. Rasinski et al. WP PWIE: SP B Tuesday 18th of Oct 2022

JÜLICH REALEVINE Pactivities | SPE meeting | **Zoom** | 20.10.2022

Conclusions

- > REs damage of the JET's Be limiter started with:
 - ✓ Tile profiling;
 - ✓ Modelling based on tile profiling results;
 - ✓ Cutting;
 - ✓ Imaging and optical microscopy.
- > IAP cutting activities and sample distribution:
 - ✓ Cutting of REs damaged Be tile partially completed;
 - ✓ Imaging and optical microscopy completed;
 - ✓ W-CFC cutting and sample distribution completed;
 - ✓ W lamellae cutting ongoing sample distribution to EUROfusion to follow

Thank you for your attention!

