

H Diffusion and Segregation at the W/Cu Interface

Based on DFT calculations

Y. Silva-Solis¹ and <u>Y. Ferro¹</u>

WP PWIE 2022 Reporting Meeting

(1) Aix-Marseille University, France

- 1 The basic tools
- 2 Past activities in WP PWIE (for understanding)
- 3 This year activity: H at the W/Cu interface
- 4 Conclusion and Perspectives

1. Basic Tools

Density Functional Theory

Atomic Scale

Accurate

Energies: binding, solution, formation of (point) defects ...

Statistic Thermodynamics

Potential of the macroscopic system

$$G(T, p, n_1, n_2, \dots, n_N) = \sum_j n_j g_j(T) - T S^{conf}(T)$$

Macroscopic system

Determine the behavior of

Kinetic model : Rate-Equations

MHIMS E. A. Hodille CEA Cadarache

> J. Denis Aix-Marseille Univ. EUROfusion Researcher Grant

> > DWE

Out of Equilibrium ...

Bulk, surface, interface ...

Various solute, defects, adsorbants, etc ...

At Thermal Equilibrium

1 – The basic tools

2 – Past activities in WP PWIE (for understanding)

- 3 This year activity: H at the W/Cu interface
- 4 Conclusion and Perspectives

2 – Modeling Surface Properties

Experimental modelling of H material interaction in Labs

Thermal Desorption Spectroscopy (TDS)
Understanding requires Rate-Equation modellings
What's the effect of the surface?
Surface models based on DFT results are being included in Rate Equations Model

Atomic scale modelling of surfaces with DFT

H on W

H + O on W

W(110) surface top view

Full energetics of H adsorption determined by DFT

H atom

W atom (top surface)

W atom (sub-surface)

Energy profile of hydrogen dissociation and absorption

M. Ajmalghan, Z. A. Piazza, E. Hodille, Y. Ferro* - Nuclear Fusion 59 (2019) 106022

Energy profile of hydrogen dissociation and absorption

M. Ajmalghan, Z. A. Piazza, E. Hodille, Y. Ferro* - Nuclear Fusion 59 (2019) 106022

Saturation corresponds to $\theta_H + \theta_0 = 1.00$

Hydrogen adsorption on W(110) - The energetics

O weakens adsorption energy for H on W(110) O limits the amount of H adsorption on W(110)

Consistent with experimental observations indicating that no H adsorbs above $\theta_0 = 0.35$

What about H migration across the oxide layer ?

O weakens adsorption energy for H on W(110) O limits the amount of H adsorption on W(110)

Exp. Obs. Dunand et al. NF 62 (2022) 054002

Under revision – submitted to Nuclear Fusion

O weakens adsorption energy for H on W(110) O limits the amount of H adsorption on W(110)

Exp. Obs. Dunand et al. NF 62 (2022) 054002

Absorption and Desorption Strongly dependent on the surface coverage

2 – H and O on W(110) surface - Kinetic model

TDS spectra modelling with / without surface mechanisms

Courtesy from E.A. Hodille (CEA)

Sievert law: $c_{\rm m}(x=0) = S(T) \sqrt{p_{H_2}}$

with S(T) the solubility of H in the material (m⁻³Pa^{-1/2})

- 1 The basic tools
- 2 Past activities in WP PWIE (for understanding)
- **3 This year activity: H at the W/Cu interface**

Yosvany Silva-Solis PhD's work

4 – Conclusion and Perspectives

Different crystallin networks for W and Cu

	Table 1 . Cu unit cells created for E_{cut} and k convergence study.					
	Structure	UC (unit cell)				
W and Cu	<i>bcc</i> (body cubic center)					
Cu	<i>fcc</i> (face cubic center)					

Figure 1. Convergence of E_{int} and W_{sep} changing number of layers in zdirection.

Convergence criterion

Figure 1. Convergence of E_{int} and W_{sep} changing number of layers in zdirection.

Convergence criterion

Figure 1. Convergence of E_{int} and W_{sep} changing number of layers in zdirection.

Figure 1. Convergence of E_{int} and W_{sep} changing number of layers in zdirection.

Converged model

Solution of H in W and Cu

	Table 1 . Cu unit cells created for E_{cut} and k convergence study.					
	Structure	UC (unit cell)	OH (octahedral)	TH (tetrahedral)		
W and Cu	<i>bcc</i> (body cubic center)					
Cu	<i>fcc</i> (face cubic center)					

Electronic and phonon calculations for all these points

Solution energy of H at the W/Cu interface

Higher solubility

in Cu than in W

Solution energy of H at the W/Cu interface

Solution energy of H at the W/Cu interface

At the interface

Very High Solubility.

The interface behaves like a sink for HIs

27

- 1 The basic tools
- 2 Past activities in WP PWIE (for understanding)
- 3 This year activity: H at the W/Cu interface
- 4 Conclusion and Perspective

4 – Conclusion and Perspectives

Conclusion on W/Cu

- A DFT model of the W/Cu interface was built
- Solution energy and vibrational frequencies are being computed close and at the W/Cu interface
- The interstitial sites and their energetics are determined across the interface

The interface acts as a sink for Hydrogen's Isotopes

Perspectives

- Computing the full energy paths joining each interstitial sites
- Providing activation barriers for Rate-Equations modelling of H diffusion at the W/Cu interface
- Effect of H accumulation at the interface

J. Denis (ERG) – PIIM AMU

- **Y. Silva Solís** (PhD) PIIM AMU
- **Y. Ferro** PIIM AMU

Collaboration E.A. Hodille – CEA Cadarache France

Aix-Marseille Université & CNRS, France

