DE LA RECHERCHE À L'INDUSTR

IRfm

Tritium permeation with different boundary conditions on the exit side

WP PWIE 2022 review meeting

F. Montupet-Leblond, E. Bernard, E. Hodille, M. Payet, S. Vartanian, R. Delaporte-Mathurin, J. Mougenot, Y. Charles, C. Grisolia

Commissariat à l'Energie Atomique et aux Energies Alternatives - www.cea.fr

1. Presentation of the Wapiti experiment

2. Preliminary measurements with H and D

3. Tritium permeation simulations

4. Adapting this method to 316L steel

Presentation of the Wapiti tritium experiment

- Goal 1: Confronting our model to tritium experimental results
- Goal 2: Extending our experimental range: low temperatures, permeation into water

- Goal 1: Confronting our model to tritium experimental results
- Goal 2: Extending our experimental range: low temperatures, permeation into water

Pictures of the Wapiti experiments

Close-up of the three permeation cells:

Pictures of the Wapiti experiments

Close-up of the three permeation cells:

View of the glovebox and bubblers:

Pros	Cons
Access to new conditions	Simplified devices
High sensitivity	Costly measurements
Relevance for safety	Complex to operate

Pros	Cons
Access to new conditions	Simplified devices
High sensitivity	Costly measurements
Relevance for safety	Complex to operate

 \Rightarrow H/D experiments are performed first:

tritium experiments require to know the permeation behaviour of the investigated material!

Preliminary measurements with H and D

$\label{eq:Diffusivity} D \text{, permeability } \Phi \text{ and solubility } K \\ \text{can be determined with gas-driven permeation experiments} \\$

If permeation is diffusion-limited, the permeation flux contains D and Φ

- Measuring transport parameters with H or D

- Measuring transport parameters with H or D
- Paving the way for a tritium experiment

- Measuring transport parameters with H or D
- Paving the way for a tritium experiment

- Measuring transport parameters with H or D
- Paving the way for a tritium experiment

- Measuring transport parameters with H or D
- Paving the way for a tritium experiment

Diffusivity in Eurofer97

cea

Trapping has an influence on the diffusivity of this material: further investigation of trapping is required

Experimental procedure:

1. Gas loading: 6 hours at 673 K under D_2

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 K

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 ${\rm K}$
- 3. Resting and pumping down

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 ${\rm K}$
- 3. Resting and pumping down
- TDS itself: 1 K.s⁻¹ ramp up to 873 K (maximum temperature chosen to remain within Eurofer97 specifications)

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 ${\rm K}$
- 3. Resting and pumping down
- TDS itself: 1 K.s⁻¹ ramp up to 873 K (maximum temperature chosen to remain within Eurofer97 specifications)

The sample is unannealed

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 ${\rm K}$
- 3. Resting and pumping down
- TDS itself: 1 K.s⁻¹ ramp up to 873 K (maximum temperature chosen to remain within Eurofer97 specifications)

The sample is unannealed

Experimental procedure:

- 1. Gas loading: 6 hours at 673 K under D_2
- 2. Thermal quenching: cool-down to 300 ${\rm K}$
- 3. Resting and pumping down
- TDS itself: 1 K.s⁻¹ ramp up to 873 K (maximum temperature chosen to remain within Eurofer97 specifications)

The sample is unannealed

Site 3

1.65

 $3.88 \cdot 10^{23}$

Site 2

1.27

We now have transport and trapping parameters for this material:

we can use $MHIMS^1$ to predict the outcome of tritium permeation experiments

¹our reaction-diffusion code, see [Hodille, Bonnin, et al., 2015]

Tritium permeation simulations

Wapiti experiments take place at room temperature \Rightarrow MHIMS predictions (taken with a grain of salt) are required

Low-temperature permeation experiments cannot be performed directly on Eurofer97 samples...

We have witnessed experimentally that the first timelag behaves differently from the following ones.

We have witnessed experimentally that the first timelag behaves differently from the following ones. This can be explained by looking at the inventories during two permeation cycles:

We have witnessed experimentally that the first timelag behaves differently from the following ones. This can be explained by looking at the inventories during two permeation cycles:

The extra time is required to fill the third trapping site, which is irreversible at this temperature

IRfm

Loading procedure:

- Injection of tritium upstream, at the pressure required for the experiment

- Injection of tritium upstream, at the pressure required for the experiment
- Heating up: 150°C during 45 minutes

- Injection of tritium upstream, at the pressure required for the experiment
- Heating up: 150°C during 45 minutes
- Reabsorption: tritium is removed from the upstream part

- Injection of tritium upstream, at the pressure required for the experiment
- Heating up: 150°C during 45 minutes
- Reabsorption: tritium is removed from the upstream part

Loading procedure:

- Injection of tritium upstream, at the pressure required for the experiment
- Heating up: 150°C during 45 minutes
- Reabsorption: tritium is removed from the upstream part

The loading procedure is necessary to measure RT permeation in Eurofer97

Adapting this method to 316L steel

This is actually caused by the native ${\rm Cr}_2O_3$ formed even at low temperatures if the ${\rm H}_2O$ concentration is higher than 10 ppm

This is actually caused by the native ${\rm Cr}_2O_3$ formed even at low temperatures if the ${\rm H}_2O$ concentration is higher than 10 ppm

Workaround to this issue: coating the 316L samples with a Pd layer

This is actually caused by the native ${\rm Cr}_2{\rm O}_3$ formed even at low temperatures if the ${\rm H}_2{\rm O}$ concentration is higher than 10 ppm

Workaround to this issue: coating the 316L samples with a Pd layer

Next steps: H permeation tests (november) and tritium tests (december)

References

References i

- Pearson, Richard J et al. (2018). "Tritium supply and use: a key issue for the development of nuclear fusion energy". In: Fusion Engineering and Design 136, pp. 1140–1148.
- Tanabe, T (2013). "Tritium fuel cycle in ITER and DEMO: Issues in handling large amount of fuel". In: Journal of Nuclear Materials 438, S19–S26.
- Perrault, Didier (2017). Nuclear Fusion Reactors Safety and radiation protection considerations for demonstration reactors that follow the ITER facility. Institut de Radioprotection et de Sûreté Nucléaire.
- De Temmerman, G. et al. (2017). "Efficiency of thermal outgassing for tritium retention measurement and removal in ITER". In: *Nuclear Materials and Energy* 12. Proceedings of the 22nd International Conference on Plasma Surface Interactions 2016, 22nd PSI, pp. 267–272. ISSN: 2352-1791.
- McNabb, A. and P. K. Foster (1963). "A new analysis of the diffusion of hydrogen in iron and ferritic steels". In: *Transactions of the Metallurgical Society of AIME* 27, pp. 227–618.
- Hodille, Etienne, A Založnik, et al. (2017). "Simulations of atomic deuterium exposure in self-damaged tungsten". In: *Nuclear Fusion* 57.5, p. 056002.

References ii

- Hodille, Etienne, Xavier Bonnin, et al. (2015). "Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials". In: *Journal of Nuclear Materials* 467, pp. 424–431.
- Esteban, G.A. et al. (2007). "Hydrogen transport and trapping in Eurofer97". In: Journal of Nuclear Materials 367-370, pp. 473–477.
- Aiello, A. et al. (2002). "Hydrogen isotopes permeability in Eurofer97 martensitic steel". In: Fusion Science and Technology 41, pp. 872–876.
- Chen, Ze et al. (2021). "Deuterium transport and retention properties of representative fusion blanket structural materials". In: Journal of Nuclear Materials 549, p. 152904.
- Martynova, Y et al. (2017). "Deuterium retention in RAFM steels after high fluence plasma exposure". In: Nuclear Materials and Energy 12, pp. 648–654.
- Oriani, R.A. (1970). "The diffusion and trapping of hydrogen in steel". In: Acta Metallurgica 18 (1), pp. 147–157.
- Benannoune, S et al. (2019). "Numerical simulation by finite element modelling of diffusion and transient hydrogen trapping processes in plasma facing components". In: Nuclear Materials and Energy 19, pp. 42–46.

References iii

- Fernández-Sousa, Rebeca, Covadonga Betegón, and Emilio Martinez-Pañeda (2020). "Analysis of the influence of microstructural traps on hydrogen assisted fatigue". In: Acta Materialia 199, pp. 253–263.
- Ryabtsev, SA et al. (2017). "Deuterium thermal desorption and re-emission from RAFM steels". In: *Physica Scripta* 2017.T170, p. 014016.
- Qiao, L et al. (2017). "Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma". In: *Physica Scripta* 2017.T170, p. 014025.
- Hu, Xunxiang et al. (2019). "Deuterium retention in advanced steels for fusion reactor structural application". In: *Journal of Nuclear Materials* 516, pp. 144–151.
- Michler, Thorsten and Michael P Balogh (2010). "Hydrogen environment embrittlement of an ODS RAF steel–Role of irreversible hydrogen trap sites". In: International Journal of Hydrogen Energy 35.18, pp. 9746–9754.
- Oliveira, VB, KD Zilnyk, and HRZ Sandim (2017). "Thermodynamic simulation of reduced activation ferritic-martensitic Eurofer97 steel". In: Journal of Phase Equilibria and Diffusion 38, pp. 208–216.