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Presentation of the Wapiti tritium

experiment



Goals & setup of the Wapiti experiments

- Goal 1: Confronting our model to tritium experimental results

- Goal 2: Extending our experimental range: low temperatures, permeation into water

WAter-interface Permeation In Tritium-exposed materIals - WAPITI
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Pictures of the Wapiti experiments

Close-up of the three permeation cells:

View of the glovebox and bubblers:
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Pros and cons of tritium experiments

Pros Cons

Access to new conditions Simplified devices

High sensitivity Costly measurements

Relevance for safety Complex to operate

⇒ H/D experiments are performed first:

tritium experiments require to know the permeation behaviour of the investigated material!
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Preliminary measurements with H and D



Experimental determination of transport parameters

Diffusivity D, permeability Φ and solubility K
can be determined with gas-driven permeation experiments

Upstream enclosure Downstream enclosure

Sample

Permeation flux

If permeation is diffusion-limited, the permeation flux contains D and Φ
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HYdrogen PERmeation in TOkamak-relevant MATErials - Hypertomate

Objectives:

- Measuring transport parameters with H or D

- Paving the way for a tritium experiment
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Diffusivity in Eurofer97
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Eurofer97 TDS up to 873 K

Experimental procedure:

1. Gas loading: 6 hours at 673 K under D2

2. Thermal quenching: cool-down to 300 K

3. Resting and pumping down

4. TDS itself: 1 K.s−1 ramp up to 873 K

(maximum temperature chosen to remain

within Eurofer97 specifications)

The sample is unannealed
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Eurofer97 TDS and MHIMS TDS

400 600 800 1000 1200
0

0.5

1

1.5
·1018

Sample temperature (K)

D
es
or
p
ti
o
n
ra
te

(D
.m

−
2
.s

−
1
)
First TDS, up to 873 K

Second TDS, up to 1273 K

MHIMS TDS up to 1273 K

MHIMS interrupted TDS, part 1

MHIMS interrupted TDS, part 2

- Satisfactory simulation of the

two experiments
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Energy (eV) 0.51 1.27 1.65

Density (m−3) 6.01 · 1025 6.44 · 1022 3.88 · 1023
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Summary

We now have transport and trapping parameters for this material:

we can use MHIMS1 to predict the outcome of tritium permeation experiments

1our reaction-diffusion code, see [Hodille, Bonnin, et al., 2015]
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Tritium permeation simulations



MHIMS predictions of Wapiti experiments

Wapiti experiments take place at room temperature

⇒ MHIMS predictions (taken with a grain of salt) are required
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Low-temperature permeation experiments cannot be performed directly on Eurofer97 samples...
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How does each trapping site contribute to permeation?

We have witnessed experimentally that the first timelag behaves differently from the following ones.

This can be explained by looking at the inventories during two permeation cycles:
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The extra time is required to fill the third trapping site, which is irreversible at this temperature
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Loading procedure and testing

Loading procedure:

- Injection of tritium upstream, at the pressure required for the experiment

- Heating up: 150°C during 45 minutes

- Reabsorption: tritium is removed from the upstream part
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The loading procedure is necessary to measure RT permeation in Eurofer97

Sample

T2 injectionT2 reabsorption
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Adapting this method to 316L steel



Hydrogen permeation tests

No satisfying result obtained: the permeation regime is not diffusion-limited, repeatability is not within

the usual range

This is actually caused by the native Cr2O3 formed even at low temperatures if the H2O concentration

is higher than 10 ppm

Workaround to this issue: coating the 316L samples with a Pd layer

Next steps: H permeation tests (november) and tritium tests (december)
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