

Data consistency checks of JET discharge 95272

Frida Eriksson

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Introduction

- 95272 is an NBI heated discharge where gas puff modulation used $_{\scriptscriptstyle \times 10^3}$ •
- Evaluated at steady state, t = 54-55s.
- Input data from IMASgo! .
 - Te, ne from HRTS ٠
 - Proxy impurity set to the one used by CX, Neon ٠
 - Ion and imp. density from Z_eff=1.4, quasineutrality ٠
 - Ion temperature CX (G6 and D6 available) •

JET #95272

Line averaged density

- ETS calculates a synthetic line averaged density corresponding to the 8 interferometer channels KG1V/LID#
 - interfdiag CPO with input from equilibrium and coreprof CPOs
- Information currently missing from IMASgo! on "lines of sight"
- Data matched from TRANSP with exp2itm gives good agreement on channels 2-4, overestimates channels 5-8, channel 1 is zero

Diamagnetic energy

- Compare plasma kinetic energy calculated in ETS to the diamagnetic energy calculated by EFIT or EFTP
- At t = 54-55s W_dia = 1.3-1.4 MJ calculated in ETS, located in scenario CPO
- At t = 54-55ss W_dia = 2MJ from EFTP
- Where does this difference originate?
- How is the fast particle contribution included?

Neutron rate

- BBNBI+ASCOT+AFSI
- slightly above experimentally measured values
- These will depend upon input density and temperature profiles
- Impurities included
- Next step: add 3% hydrogen

