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Motivation

» Linear microinstabilities — turbulence — produces stiff transport

» Desirable to have high temperature in the core, requiring a large temperature
gradient — maximise temperature gradient whilst maintaining microstability

» Magnetic confinement fusion (MCF) devices are complicated, and the linear
growth rate depends on a large number of parameters

» High-dimensionality of parameter space makes scans computationally
expensive
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Framework of project

» Develop general adjoint model for gyrokinetics
» Implement into stella, perturbing magnetic geometry

» Can we increase temperature gradient?
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System set-up: introduction example

» System objective function:

Llp; f(p,s)] =0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

3/13



System set-up: introduction example

» System objective function:

Llp; f(p,s)] =0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

> Want to optimise function H = H[p; f] with respect to {p;}

Hlp; fl=  (h[p; f(P)], f) (2)

inner product of h with f

3/13



System set-up: introduction example

» System objective function:

Llp; f(p,s)] =0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

> Want to optimise function H = fI[p; f] with respect to {p;}

Hlp; fl=  (h[p; f(P)], f) (2)

inner product of h with f
» Could use a finite difference method

OH _ Hipi+ dpi; f(pi + 6pi)] — H[pis f(pi)] 3)
Opi op;

but this is expensive when parameter space is large

3/13
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» System objective function:

Llp; f(p,s)] =0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

> Want to optimise function H = fI[p; f] with respect to {p;}

Hlp; fl=  (h[p; f(P)], f) (2)

inner product of h with f
» Could use a finite difference method

oH _ I;T[pl + 6pi; f(pi + pi)] — JEI[PN J(pi)]
Opi - opi

but this is expensive when parameter space is large

» Alternatively use an adjoint method approach - Computation is independent
of dimension of the parameter space.
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Adjoint equations: introduction example

» Define an optimisation Lagrangian

£lpi £,X] = Alp: S )] + (Lip: S (P)], \) )

Recall L[p; f(p)] =0
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Adjoint equations: introduction example
> Define an optimisation Lagrangian
Llp; £,2] = Hip; f(p)] + (LIp: f(P) A) (4)
Recall L[p; f(p)] =0

» For brevity we will consider the 1-D case for the derivation of the adjoint
equations, then generalise to a multi-dimensional parameter space

p—p Vp = dp (5)
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> Define an optimisation Lagrangian
Llp; £,2] = Hip; f(p)] + (LIp: f(P) A) (4)
Recall L[p; f(p)] =0

» For brevity we will consider the 1-D case for the derivation of the adjoint
equations, then generalise to a multi-dimensional parameter space

p—p Vp = dp (5)

» Take derivative of (4) with respect to p

GWLlps N = ol + (LAY + (LA )+ 05 () EA)  (6)
N———
Takes into account p-dependence
in Jacobian
with

A = (0,hlp; £1. £) + (hlpidy 1, £) + (hlps f1,duf ) + 07 ((dpT)hs ) (7)
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Adjoint equations: introduction example

» Derivative d,, f are computationally expensive

» Invert the operators h and L wherever they act on d, f, and collect coefficients
of dp f terms
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Adjoint equations: introduction example

» Derivative d,, f are computationally expensive

» Invert the operators h and L wherever they act on d, f, and collect coefficients
of dp f terms

» Resulting equation is:

VoLlp; f, A”f,)\ = <8pil[1’§ Il f> + <3pﬁ[p; fl, )\> (8)
W' p; f1+ hlp; f] + LT [p; A} = 0 (9)

» Computational cost = cost of solving original system + solving adjoint
equation

» Including more p’s does not increase the computation
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Adjoint system for gyrokinetics

» Now let’s adapt this method for gyrokinetics
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> Given that we want to take deriavatives of our optimisation lagrangian with
respect to p, we will encounter terms of the form
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Adjoint system for gyrokinetics
» Now let’s adapt this method for gyrokinetics

» Recall that this system has dependence on g, (through the gyrokinetic
equation), ¢ (quasineutrality), A, and B) (Ampere’s law)

> Given that we want to take deriavatives of our optimisation lagrangian with
respect to p, we will encounter terms of the form

VpQU7 Vp(;bv VPAH7 VP(;B” (10)

These are computationally expensive to calculate so we set their coefficients to
Z€ro

» With some algebra, one can show that
dpyo = stuff (11)

where 7y is the linear growth rate, and “stuff” is a result of taking the
adjoints of our functional operators
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Adjoint optimisation app

User Input

| Create input file with given temperature gradient |<—

Solve GK system for o and a@

| Adjoint Method

Calculates dpvo |

Is vo

<0? no

Enter Optimisation loop
update p

Tao

Exceeded maximum

number of iterations?

yes

Finish
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System of interest
» Choose to consider perturbations to Miller geometry formalism
» Transform to polar coordinates:
R(r,0) = Ro(r) + rcos [0 + sin(0)d(r)] (12)
Z(r,0) = r k(r)sin(0) (13)

Midplane
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» Transform to polar coordinates:
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N>

Midplane
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Triangularity

» Can vary triangularity, 8, of flux surface

Small § Large 0
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Elongation

» Can very elongation, k, of flux surface

Small k Large k
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Elongation

» Can very elongation, k, of flux surface

Small k Large k

> Can generalise to vector of parameters: p = {r, Ro, A, q, §, k, k', Rgeo, 5,8, 8}
at no further computational cost!
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Adjoint + Levenberg-Marquardt

» Comparison with finite difference scan when varying J, and «
» Use adjoint method to find gradient, and use Levenberg-Marquardt algorithm
for optimisation loop

=]
=3
&
ya/ven,

0.75
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Increasing the temperature gradient

» Second temperature iteration

> fo =242, fo = 3.49
T; . T,
2 Iprevious 1 Inew
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Summary of adjoint work

» Developed a generalised formalism for calculating derivatives of linear growth
rate using adjoint

» Implemented adjoint equations into § f gyrokinetic code stella for the case of
Miller geometry in an electrostatic, collisionless regime

» Have shown an example case by varying triangularity and elongation, for

which the adjoint method has show significant improvements in terms of
computational cost
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Backup slides: Constraint equations
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Backup slides: Constraint equations

dpl :<8PGV? )z, + <8PQ»§>Z + <8PM7 Q)=+ <8PN7 o)z

dp£ = (apélfv )\D>z,vu + <6PQ7£>Z + <8PM7 C)z + <8PN7 J>z

only contains partial derivatives

dpL =(0pCoy M) 2w, + (0pQ, €)= + (0pM,()- + (0pN, o)
ézl = Yogv + i/u
L£L=0, dpl=0
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Backup slides: Adjoint Equations
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Backup slides: Adjoint for Miller geometry
Define vector p := {r, Ro, A, q, 8, k, k', Rgeo, 6,8’ , '}

» Minor radius - r
» Major radius - Ro

» Shafranov shift - A

27 d@BV(

> Safety factor - g = o= I B-Vo

27 Jo
» Magnetic shear - § = gq’
» Elongation - x, and &’
» Proxy for reference magnetic field - Rgeo =

> Triangularity - 6, and &’

4rmp’
B2

ref

» Plasma beta derivative - 8/ = —




Backup slides: Negative triangularity
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» LM algorithm has difficulty with finding local minima rather than global
minima
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Future work - Full Flux Surface (FFS)

» Currently stella uses flux-tube approximation

» Different field lines are decoupled

Gonzédlez-Jerez et al. 2021



Future work - Full Flux Surface (FFS)

» FFS stella allows non-linearly coupling of different field lines

> Explore how zonal flows, k, = 0 affect stability

Jingchun LI



Future work - Full Flux Surface (FFS)

To do:
» Benchmark explicit, adiabatic version by taking p. — 0
» Make FFS stella implicit

» Investigate implications, if any, of zonal modes
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