
Adjoint method for gyrokinetic optimisation

G. Acton1,2, M. Barnes1, S. Newton1

1Rudolf Peierls Centre For Theoretical Physics,
University of Oxford, OXford, OX1 3PU, UK

2Culham Centre for Fusion Energy,
United Kingdom Atomic Energy Authority,

Abingdon, OX14 3EB, UK

TSVV, 10/10/2022



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



Motivation

I Linear microinstabilities → turbulence → produces stiff transport

I Desirable to have high temperature in the core, requiring a large temperature
gradient → maximise temperature gradient whilst maintaining microstability

I Magnetic confinement fusion (MCF) devices are complicated, and the linear
growth rate depends on a large number of parameters

I High-dimensionality of parameter space makes scans computationally
expensive

1 / 13



Motivation

I Linear microinstabilities → turbulence → produces stiff transport

I Desirable to have high temperature in the core, requiring a large temperature
gradient → maximise temperature gradient whilst maintaining microstability

I Magnetic confinement fusion (MCF) devices are complicated, and the linear
growth rate depends on a large number of parameters

I High-dimensionality of parameter space makes scans computationally
expensive

1 / 13



Framework of project

I Develop general adjoint model for gyrokinetics

I Implement into stella, perturbing magnetic geometry

I Can we increase temperature gradient?

2 / 13



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



System set-up: introduction example

I System objective function:
L̂[p; f(p, s)] = 0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

3 / 13



System set-up: introduction example

I System objective function:
L̂[p; f(p, s)] = 0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

I Want to optimise function Ĥ = Ĥ[p; f ] with respect to {pi}

Ĥ[p; f ] = 〈ĥ[p; f(p)], f〉︸ ︷︷ ︸
inner product of ĥ with f

(2)

3 / 13



System set-up: introduction example

I System objective function:
L̂[p; f(p, s)] = 0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

I Want to optimise function Ĥ = Ĥ[p; f ] with respect to {pi}

Ĥ[p; f ] = 〈ĥ[p; f(p)], f〉︸ ︷︷ ︸
inner product of ĥ with f

(2)

I Could use a finite difference method

∂Ĥ

∂pi
=
Ĥ[pi + δpi; f(pi + δpi)]− Ĥ[pi; f(pi)]

δpi
(3)

but this is expensive when parameter space is large

3 / 13



System set-up: introduction example

I System objective function:
L̂[p; f(p, s)] = 0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)

I Want to optimise function Ĥ = Ĥ[p; f ] with respect to {pi}

Ĥ[p; f ] = 〈ĥ[p; f(p)], f〉︸ ︷︷ ︸
inner product of ĥ with f

(2)

I Could use a finite difference method

∂Ĥ

∂pi
=
Ĥ[pi + δpi; f(pi + δpi)]− Ĥ[pi; f(pi)]

δpi
(3)

but this is expensive when parameter space is large

I Alternatively use an adjoint method approach - Computation is independent
of dimension of the parameter space.

3 / 13



Adjoint equations: introduction example

I Define an optimisation Lagrangian

L[p; f, λ] = Ĥ[p; f(p)] +
〈
L̂[p; f(p)], λ

〉
(4)

Recall L̂[p; f(p)] = 0

4 / 13



Adjoint equations: introduction example

I Define an optimisation Lagrangian

L[p; f, λ] = Ĥ[p; f(p)] +
〈
L̂[p; f(p)], λ

〉
(4)

Recall L̂[p; f(p)] = 0

I For brevity we will consider the 1-D case for the derivation of the adjoint
equations, then generalise to a multi-dimensional parameter space

p→ p ∇p → dp (5)

4 / 13



Adjoint equations: introduction example

I Define an optimisation Lagrangian

L[p; f, λ] = Ĥ[p; f(p)] +
〈
L̂[p; f(p)], λ

〉
(4)

Recall L̂[p; f(p)] = 0

I For brevity we will consider the 1-D case for the derivation of the adjoint
equations, then generalise to a multi-dimensional parameter space

p→ p ∇p → dp (5)

I Take derivative of (4) with respect to p

dpL[p; f, λ] = dpĤ +
〈

dpL̂, λ
〉

+
〈
L̂,dpλ

〉
+ ∂J

〈
(dpJ ) L̂, λ

〉
︸ ︷︷ ︸

Takes into account p-dependence
in Jacobian

(6)

with

dpĤ =
〈
∂pĥ[p; f ], f

〉
+
〈
ĥ[p; dpf ], f

〉
+
〈
ĥ[p; f ], dpf

〉
+ ∂J

〈
(dpJ )ĥ, λ

〉
(7)

4 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

5 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

dpL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉∣∣∣
f,λ

+
〈
ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ], dpf

〉∣∣∣
f,λ︸ ︷︷ ︸

computationally expensive to calculate
so set to zero

(8)

5 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

dpL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉∣∣∣
f,λ

+
〈
ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ], dpf

〉∣∣∣
f,λ

(8)

5 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

dpL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉
(8)

ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ] = 0 (9)

5 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

∇pL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉
(8)

ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ] = 0 (9)

5 / 13



Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

∇pL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉
(8)

ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ] = 0 (9)

I Computational cost = cost of solving original system + solving adjoint
equation

I Including more p’s does not increase the computation

5 / 13



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



Adjoint system for gyrokinetics

I Now let’s adapt this method for gyrokinetics

6 / 13



Adjoint system for gyrokinetics

I Now let’s adapt this method for gyrokinetics

I Recall that this system has dependence on gν (through the gyrokinetic
equation), φ (quasineutrality), A‖, and B‖ (Ampere’s law)

6 / 13



Adjoint system for gyrokinetics

I Now let’s adapt this method for gyrokinetics

I Recall that this system has dependence on gν (through the gyrokinetic
equation), φ (quasineutrality), A‖, and B‖ (Ampere’s law)

I Given that we want to take deriavatives of our optimisation lagrangian with
respect to p, we will encounter terms of the form

∇pgν , ∇pφ, ∇pA‖, ∇pδB‖ (10)

These are computationally expensive to calculate so we set their coefficients to
zero

6 / 13



Adjoint system for gyrokinetics

I Now let’s adapt this method for gyrokinetics

I Recall that this system has dependence on gν (through the gyrokinetic
equation), φ (quasineutrality), A‖, and B‖ (Ampere’s law)

I Given that we want to take deriavatives of our optimisation lagrangian with
respect to p, we will encounter terms of the form

∇pgν , ∇pφ, ∇pA‖, ∇pδB‖ (10)

These are computationally expensive to calculate so we set their coefficients to
zero

I With some algebra, one can show that

dpγ0 = stuff (11)

where γ0 is the linear growth rate, and “stuff” is a result of taking the
adjoints of our functional operators

6 / 13



Adjoint optimisation app

User Input

Create input file with given temperature gradient

Solve GK system for γ0 and adjoint variables

Adjoint Method Calculates dpγ0

Is γ0 ≤ 0?
Exceeded maximum

number of iterations?

Exceeded maximum
number of iterations?

Increase temperature gradient

Enter Optimisation loop
update p

Finish

yes

no

no

yes

yes

no

7 / 13



Adjoint optimisation app

User Input

Create input file with given temperature gradient

Solve GK system for γ0 and adjoint variables

Adjoint Method Calculates dpγ0

Is γ0 ≤ 0?
Exceeded maximum

number of iterations?

Exceeded maximum
number of iterations?

Increase temperature gradient

Enter Optimisation loop
update p

Finish

yes

no

no

yes

yes

no

7 / 13



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



System of interest

I Choose to consider perturbations to Miller geometry formalism
I Transform to polar coordinates:

R(r, θ) = R0(r) + r cos [θ + sin(θ)δ(r)] (12)

Z(r, θ) = r κ(r) sin(θ) (13)

ẑ

Midplane

R0(r)

2r0

8 / 13



System of interest

I Choose to consider perturbations to Miller geometry formalism
I Transform to polar coordinates:

R(r, θ) = R0(r) + r cos [θ + sin(θ)δ(r)] (12)

Z(r, θ) = r κ(r) sin(θ) (13)

ẑ

Midplane

•

θ

Z(r, θ)•

θ
R(r, θ)−R0(r)

8 / 13



Triangularity

I Can vary triangularity, δ, of flux surface

Small δ Large δ

9 / 13



Elongation

I Can very elongation, κ, of flux surface

Small κ Large κ

10 / 13



Elongation

I Can very elongation, κ, of flux surface

Small κ Large κ

I Can generalise to vector of parameters: p = {r,R0,∆, q, ŝ, κ, κ
′, Rgeo, δ, δ

′, β′}
at no further computational cost!

10 / 13



Adjoint + Levenberg-Marquardt

I Comparison with finite difference scan when varying δ, and κ

I Use adjoint method to find gradient, and use Levenberg-Marquardt algorithm
for optimisation loop

11 / 13



Increasing the temperature gradient

I Second temperature iteration

I R0
LTi

∣∣∣
previous

= 2.42, R0
LTi

∣∣∣
new

= 3.49

12 / 13



Table of Contents

1. Motivation, framework, and equations

2. Adjoint method - general overview

3. Adjoint method for gyrokinetics

4. Numerical results

5. Summary of adjoint work



Summary of adjoint work

I Developed a generalised formalism for calculating derivatives of linear growth
rate using adjoint

I Implemented adjoint equations into δf gyrokinetic code stella for the case of
Miller geometry in an electrostatic, collisionless regime

I Have shown an example case by varying triangularity and elongation, for
which the adjoint method has show significant improvements in terms of
computational cost

13 / 13



Backup slides: Constraint equations

Ĝk,ν = γk,0gk,ν,0 + vth,νv‖ b̂ ·∇z

[
∂gk,ν,0
∂z

+
Zν
Tν

∂ 〈χk,0〉Rν
∂z

e−v
2
ν

]
+ iω?,k,νe

−v2
ν 〈χk,0〉Rν + iωd,k,ν

[
gk,ν,0 +

Zν
Tν
〈χk,0〉Rν e−v

2
ν

]
− vth,νµν b̂ ·∇B0

∂gk,ν,0
∂v‖

+ 2
Zν
mν

µν b̂ ·B0e
−v2

νJ0,k,νA‖,k,0 − Ĉk,ν [gk,ν,0]

Q̂k =
∑
ν

Zνnν

{
2B0√
π

∫
d2v̂ J0,k,νgk,ν,0 +

Zν
Tν

(Γ0,k,ν − 1) φk,0 +
1

B0
Γ1,k,νδB‖,k,0

}
,

M̂k = − β

(k⊥ρr)
2

∑
ν

Zνnνvth,ν
2B√
π

∫
d2v̂ v‖J0,k,νgk,ν,0

+

[
1 +

β

(k⊥ρr)
2

∑
ν

Zνnν
mν

Γ0,k,ν

]
A‖,k,0 (14)

N̂k = 2β
∑
ν

nνTν
2B0√
π

∫
d2v̂µν

J0,k,ν
ak,ν

gk,ν,0 +

[
β

2B0

∑
ν

ZνnνΓ1,k,ν

]
φk,0

+

[
1 +

β

2B0

∑
ν

ZνnνTνΓ2,k,ν

]
δB‖,k,0 (15)



Backup slides: Constraint equations

dpL =〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z (16)

= 0

dpL = 〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z︸ ︷︷ ︸
only contains partial derivatives

(17)

dpL =〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z (18)

Ĝν = γ0gν + L̂ν

L = 0, dpL = 0



Backup slides: Adjoint Equations

γ∗0 λ́ν + vth,νv‖ b̂ ·∇z
∂λ́ν
∂z
− vth,ν µν b̂ ·∇B

∂λ́ν
∂v‖
− iωd,ν λ́ν

+ ZνnνJ0,νξ −
β

(k⊥ρr)2
Zνnνvth,νJ0,νv‖ζ + 2βTνµν

J1,ν
aν

σ − Ĉν [λ́ν ] = 0 ,

(19)

η̄ξ +
∑
ν

2B√
π

∫
d2v̂

[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 , (20)

ζ −
∑
ν

2B√
π

∫
d2v̂ (2vth,νv‖)

[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 , (21)

σ −
∑
ν

2B√
π

∫
d2v̂

(
4µν

J1,ν
aν

)[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 . (22)



Backup slides: Adjoint for Miller geometry

Define vector p := {r,R0,∆, q, ŝ, κ, κ
′, Rgeo, δ, δ

′, β′}

I Minor radius - r

I Major radius - R0

I Shafranov shift - ∆

I Safety factor - q = 1
2π

∫ 2π

0
dθB·∇ζ

B·∇θ

I Magnetic shear - ŝ
.
= r

q
q′

I Elongation - κ, and κ′

I Proxy for reference magnetic field - Rgeo = I(r)
aBref

I Triangularity - δ, and δ′

I Plasma beta derivative - β′ = − 4πp′

B2
ref



Backup slides: Negative triangularity

I LM algorithm has difficulty with finding local minima rather than global
minima



Backup: Full Flux Surface



Future work - Full Flux Surface (FFS)

I Currently stella uses flux-tube approximation

I Different field lines are decoupled

González-Jerez et al. 2021



Future work - Full Flux Surface (FFS)

I FFS stella allows non-linearly coupling of different field lines

I Explore how zonal flows, ky = 0 affect stability

Jingchun LI



Future work - Full Flux Surface (FFS)

To do:

I Benchmark explicit, adiabatic version by taking ρ∗ → 0

I Make FFS stella implicit

I Investigate implications, if any, of zonal modes


	Motivation, framework, and equations
	Adjoint method - general overview
	Adjoint method for gyrokinetics
	Numerical results
	Summary of adjoint work

