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Motivation

I Linear microinstabilities → turbulence → produces stiff transport

I Desirable to have high temperature in the core, requiring a large temperature
gradient → maximise temperature gradient whilst maintaining microstability

I Magnetic confinement fusion (MCF) devices are complicated, and the linear
growth rate depends on a large number of parameters

I High-dimensionality of parameter space makes scans computationally
expensive
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Framework of project

I Develop general adjoint model for gyrokinetics

I Implement into stella, perturbing magnetic geometry

I Can we increase temperature gradient?
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System set-up: introduction example

I System objective function:
L̂[p; f(p, s)] = 0 (1)

where p = set of parameters, and f = function that depends on p (e.g.
distribution function)
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inner product of ĥ with f

(2)

I Could use a finite difference method

∂Ĥ

∂pi
=
Ĥ[pi + δpi; f(pi + δpi)]− Ĥ[pi; f(pi)]

δpi
(3)

but this is expensive when parameter space is large

I Alternatively use an adjoint method approach - Computation is independent
of dimension of the parameter space.

3 / 13



Adjoint equations: introduction example

I Define an optimisation Lagrangian

L[p; f, λ] = Ĥ[p; f(p)] +
〈
L̂[p; f(p)], λ

〉
(4)

Recall L̂[p; f(p)] = 0
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〈
L̂[p; f(p)], λ

〉
(4)

Recall L̂[p; f(p)] = 0

I For brevity we will consider the 1-D case for the derivation of the adjoint
equations, then generalise to a multi-dimensional parameter space

p→ p ∇p → dp (5)

I Take derivative of (4) with respect to p

dpL[p; f, λ] = dpĤ +
〈

dpL̂, λ
〉

+
〈
L̂,dpλ

〉
+ ∂J

〈
(dpJ ) L̂, λ

〉
︸ ︷︷ ︸

Takes into account p-dependence
in Jacobian

(6)

with

dpĤ =
〈
∂pĥ[p; f ], f

〉
+
〈
ĥ[p; dpf ], f

〉
+
〈
ĥ[p; f ], dpf

〉
+ ∂J

〈
(dpJ )ĥ, λ

〉
(7)
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I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms
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Adjoint equations: introduction example

I Derivative dpf are computationally expensive

I Invert the operators ĥ and L̂ wherever they act on dpf , and collect coefficients
of dpf terms

I Resulting equation is:

∇pL[p; f, λ]|f,λ =
〈
∂pĥ[p; f ], f

〉
+
〈
∂pL̂[p; f ], λ

〉
(8)

ĥ†[p; f ] + ĥ[p; f ] + L̂†[p;λ] = 0 (9)

I Computational cost = cost of solving original system + solving adjoint
equation

I Including more p’s does not increase the computation
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equation), φ (quasineutrality), A‖, and B‖ (Ampere’s law)

I Given that we want to take deriavatives of our optimisation lagrangian with
respect to p, we will encounter terms of the form

∇pgν , ∇pφ, ∇pA‖, ∇pδB‖ (10)

These are computationally expensive to calculate so we set their coefficients to
zero

I With some algebra, one can show that

dpγ0 = stuff (11)

where γ0 is the linear growth rate, and “stuff” is a result of taking the
adjoints of our functional operators
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Adjoint optimisation app

User Input

Create input file with given temperature gradient

Solve GK system for γ0 and adjoint variables

Adjoint Method Calculates dpγ0

Is γ0 ≤ 0?
Exceeded maximum

number of iterations?

Exceeded maximum
number of iterations?

Increase temperature gradient

Enter Optimisation loop
update p

Finish

yes

no

no

yes

yes

no
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System of interest

I Choose to consider perturbations to Miller geometry formalism
I Transform to polar coordinates:

R(r, θ) = R0(r) + r cos [θ + sin(θ)δ(r)] (12)

Z(r, θ) = r κ(r) sin(θ) (13)

ẑ

Midplane

R0(r)

2r0
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I Transform to polar coordinates:

R(r, θ) = R0(r) + r cos [θ + sin(θ)δ(r)] (12)

Z(r, θ) = r κ(r) sin(θ) (13)

ẑ

Midplane

•

θ

Z(r, θ)•

θ
R(r, θ)−R0(r)
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Triangularity

I Can vary triangularity, δ, of flux surface

Small δ Large δ
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Elongation

I Can very elongation, κ, of flux surface

Small κ Large κ
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Elongation

I Can very elongation, κ, of flux surface

Small κ Large κ

I Can generalise to vector of parameters: p = {r,R0,∆, q, ŝ, κ, κ
′, Rgeo, δ, δ

′, β′}
at no further computational cost!
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Adjoint + Levenberg-Marquardt

I Comparison with finite difference scan when varying δ, and κ

I Use adjoint method to find gradient, and use Levenberg-Marquardt algorithm
for optimisation loop
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Increasing the temperature gradient

I Second temperature iteration

I R0
LTi

∣∣∣
previous

= 2.42, R0
LTi

∣∣∣
new

= 3.49
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Summary of adjoint work

I Developed a generalised formalism for calculating derivatives of linear growth
rate using adjoint

I Implemented adjoint equations into δf gyrokinetic code stella for the case of
Miller geometry in an electrostatic, collisionless regime

I Have shown an example case by varying triangularity and elongation, for
which the adjoint method has show significant improvements in terms of
computational cost
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Backup slides: Constraint equations

Ĝk,ν = γk,0gk,ν,0 + vth,νv‖ b̂ ·∇z

[
∂gk,ν,0
∂z

+
Zν
Tν

∂ 〈χk,0〉Rν
∂z

e−v
2
ν

]
+ iω?,k,νe

−v2
ν 〈χk,0〉Rν + iωd,k,ν

[
gk,ν,0 +

Zν
Tν
〈χk,0〉Rν e−v

2
ν

]
− vth,νµν b̂ ·∇B0

∂gk,ν,0
∂v‖

+ 2
Zν
mν

µν b̂ ·B0e
−v2

νJ0,k,νA‖,k,0 − Ĉk,ν [gk,ν,0]

Q̂k =
∑
ν

Zνnν

{
2B0√
π

∫
d2v̂ J0,k,νgk,ν,0 +

Zν
Tν

(Γ0,k,ν − 1) φk,0 +
1

B0
Γ1,k,νδB‖,k,0

}
,

M̂k = − β

(k⊥ρr)
2

∑
ν

Zνnνvth,ν
2B√
π

∫
d2v̂ v‖J0,k,νgk,ν,0

+

[
1 +

β

(k⊥ρr)
2

∑
ν

Zνnν
mν

Γ0,k,ν

]
A‖,k,0 (14)

N̂k = 2β
∑
ν

nνTν
2B0√
π

∫
d2v̂µν

J0,k,ν
ak,ν

gk,ν,0 +

[
β

2B0

∑
ν

ZνnνΓ1,k,ν

]
φk,0

+

[
1 +

β

2B0

∑
ν

ZνnνTνΓ2,k,ν

]
δB‖,k,0 (15)



Backup slides: Constraint equations

dpL =〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z (16)

= 0

dpL = 〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z︸ ︷︷ ︸
only contains partial derivatives

(17)

dpL =〈∂pĜν , λν〉z,vν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ〉z + 〈∂pN̂ , σ〉z (18)

Ĝν = γ0gν + L̂ν

L = 0, dpL = 0



Backup slides: Adjoint Equations

γ∗0 λ́ν + vth,νv‖ b̂ ·∇z
∂λ́ν
∂z
− vth,ν µν b̂ ·∇B

∂λ́ν
∂v‖
− iωd,ν λ́ν

+ ZνnνJ0,νξ −
β

(k⊥ρr)2
Zνnνvth,νJ0,νv‖ζ + 2βTνµν

J1,ν
aν

σ − Ĉν [λ́ν ] = 0 ,

(19)

η̄ξ +
∑
ν

2B√
π

∫
d2v̂

[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 , (20)

ζ −
∑
ν

2B√
π

∫
d2v̂ (2vth,νv‖)

[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 , (21)

σ −
∑
ν

2B√
π

∫
d2v̂

(
4µν

J1,ν
aν

)[
iω∗,ν +

Zν
Tν
γ∗0

]
J0,ν λ́ν = 0 . (22)



Backup slides: Adjoint for Miller geometry

Define vector p := {r,R0,∆, q, ŝ, κ, κ
′, Rgeo, δ, δ

′, β′}

I Minor radius - r

I Major radius - R0

I Shafranov shift - ∆

I Safety factor - q = 1
2π

∫ 2π

0
dθB·∇ζ

B·∇θ

I Magnetic shear - ŝ
.
= r

q
q′

I Elongation - κ, and κ′

I Proxy for reference magnetic field - Rgeo = I(r)
aBref

I Triangularity - δ, and δ′

I Plasma beta derivative - β′ = − 4πp′

B2
ref



Backup slides: Negative triangularity

I LM algorithm has difficulty with finding local minima rather than global
minima



Backup: Full Flux Surface



Future work - Full Flux Surface (FFS)

I Currently stella uses flux-tube approximation

I Different field lines are decoupled

González-Jerez et al. 2021



Future work - Full Flux Surface (FFS)

I FFS stella allows non-linearly coupling of different field lines

I Explore how zonal flows, ky = 0 affect stability

Jingchun LI



Future work - Full Flux Surface (FFS)

To do:

I Benchmark explicit, adiabatic version by taking ρ∗ → 0

I Make FFS stella implicit

I Investigate implications, if any, of zonal modes


	Motivation, framework, and equations
	Adjoint method - general overview
	Adjoint method for gyrokinetics
	Numerical results
	Summary of adjoint work

